
1 Transverse Cooling

1.1 Recap Beam Definitions

1.1.1 Emittance

normalized emittance =
Phase Space Area

m c

If x and px both Gaussian and uncorrelated, then area is that of an upright
ellipse

ε⊥ =
σp⊥σx
mc

= σθσx (γβv) (π m rad)

ε‖ =
σp‖σz

mc
=
σp
p
σz (γβv) (π m rad)

ε6 = ε2⊥ ε‖ (π m)3

Note that, by convention, the π is not included in the calculated values, but
added to the dimension

1.1.2 BetaCourant−Schneider

Again upright ellipse, e.g. at Focus:

β⊥ =
σx
σθ

✦✦✦✦✦✦

❛❛❛❛❛❛

❛❛❛❛❛❛

✦✦✦✦✦✦β⊥ σθ

σx

Then, using emittance definition:

σx =
√
ε⊥ β⊥

1
βvγ
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σθ =
√
ε⊥
β⊥

1
βvγ

β⊥ is defined by the beam, but a lattice can have a βo that ”matches” a
beam with that β⊥

1.2 Introduction to Solenoid Focussing

Motion in Long Solenoid

ρ =
p⊥
c Bz

ψ

φ = ψ
2

ρ

r

y

x

x = ρ sin(ψ)

y = ρ (1 − cos(ψ))

Larmor Plane
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r = |2ρ (sin(φ))|
u = 2ρ (sin(φ))

λHelix = 2π
pz
c Bz

λLarmor = 2π
pz

2 c Bz

Ted told us that there is a
β =

dφ

dx

which gives

βTed =
λLarmor

2π

Phase Ellipse

β⊥ =
maximum of u

maximum of du/dz

u = 2ρ sin(φ)

du

dz
=

2ρ cos(φ)
βTed

so
β⊥ = βTed
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Focussing ”Force”

d2u

dz2
= −k u

k =
(
c Bz
2 pz

)2

TRUE FOR VARYING FIELDS TOO

Note: the focusing ”Force” ∝ B2
z and ∝ 1/p2z

Is not good for high p, but beats quads at low p, and focuses in both direc-
tions simultaneously.

Angular Momentum

M = r p⊥ sin(φ)

M =
r2 Bz c

2

Entering a solenoid

ra
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iu
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φ = 2π r
∫

B⊥ d�

φ = π r2 Bz
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2.5

∆p⊥ =
∫
Br dz =

Bz r c

2

M = p⊥ r =
r2 Bz c

2
SAME AS ABOVE

In fact, if outside B, M = 0, then eqn. is true INDEPENDENT OF EAR-
LIER B’s SHAPE
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If there is Mo outside B (known as Canonical Angular Momentum), then in
Bz:

M = Mo + p⊥ r =
r2 Bz c

2

1.3 Transverse Cooling

p‖ less
p⊥ less

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

p‖ restored
p⊥ still less

✟✟✟✟

✘✘✘✘✿

AccelerationMaterial

1.3.1 Cooling rate vs. Energy

εx,y = γβv σθ σx,y (1)

If there is no Coulomb scattering, or other sources of emittance heating,
then σθ and σx,y are unchanged by energy loss, but p and thus βγ is reduced.
So the fractional cooling dε /ε is:

dε

ε
=
dp

p
=
dE

E

1
β2
v

(2)

which, for a given energy change, strongly favors cooling at low energy.

But if total acceleration were not important, e.g. if the cooling is done in a
ring, then there is another criterion: The cooling per fractional loss of particles
by decay:

Q =
dε/ε

dn/n
=

dp/p

d#/cβvγτ

=
dE/E 1/β2

v

d#/(cγβvτ)
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= (cτ/mµ)
dE

d#

1
βv

Which only mildly favours low energy

1.3.2 Heating Terms

εx,y = γβv σθ σx,y (3)

Between scatters the drift conserves emittance (Liouiville).
When there is scattering, σx,y is conserved, but σθ is increased.

∆(εx,y)2 = γ2β2
v σ

2
x,y∆(σ2

θ)

2ε ∆ε = γ2β2
v

(
εβ⊥
γβv

)
∆(σ2

θ)

∆ε =
β⊥γβv

2
∆(σ2

θ)

e.g. from Particle data booklet

∆(σ2
θ) ≈

(
14.1 106

(p)βv

)2 ∆s
LR

∆ε =
β⊥
γβ3

v

dE

((
14.1 106

2(mµ)

)2 1
LR∆E/ds

)

Defining

C(mat,E) =
1
2

(
14.1 106

(mµ)

)2 1
LR dγ/ds

(4)

then
∆ε
ε

= dE
β⊥
εγβ3

v

C(mat,E) (5)

Equating this with equation 2

dE
1
β2
v E

= dE
β⊥
εγβ3

v

C(mat,E)

gives the equilibrium emittance εo:

εx,y(min) =
β⊥
βv
C(mat,E) (6)

Rate of Cooling

dε

ε
=
(

1 − εmin

ε

) dp
p

(7)
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At energies such as to give minimum ionization loss, the constant Co for
various materials are approximately:

material T density dE/dx LR Co
oK kg/m3 MeV/m m 10−4

Liquid H2 20 71 28.7 8.65 38
Liquid He 4 125 24.2 7.55 51
LiH 300 820 159 0.971 61
Li 300 530 87.5 1.55 69
Be 300 1850 295 0.353 89
Al 300 2700 436 0.089 248

Clearly Liquid Hydrogen is far the best material, but has cryogenic and safety
complications, and requires windows made of Aluminum or other material which
will significantly degrade the performance.

1.3.3 Beam Divergence Angles

σθ =
√

ε⊥
β⊥ βvγ

so, from equation 6, for a beam in equilibrium

σθ =

√
C(mat,E)
β2
vγ

and for 50 % of maximum cooling and an aperture at 3 σ, the aperture A of
the system must be

A = 3
√

2

√
C(mat,E)
β2
vγ

(8)

Apertures for hydrogen and lithium are plotted vs. energy below. These are
very large angles, and if we limit apertures to less than 0.3, then this requirement
sets lower energy limits of about 100 MeV (≈ 170 MeV/c) for Lithium, and
about 25 MeV (≈ 75 MeV/c) for hydrogen.
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1.4 Focusing Systems

1.4.1 Solenoid

***
In a solenoid with axial field Bsol

β⊥ =
2 (p)
c Bsol

so
εx,y(min) = C(mat,E)

2 γ (mµ)
Bsol c

(9)

For E = 100 MeV (p ≈ 170 MeV/c), B = 20 T , then β ≈ 5.7 cm. and

εx,y ≈ 266(πmm mrad).
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1.4.2 Current Carrying Rod

In a rod carrying a uniform axial current, the azimuthal magnetic field B varies
linearly with the radius r.

A muon traveling down it:

d2r

dr2
=
B c

(p)
=
r c

(p)
dB

dr

so orbits oscillate with

β2
⊥ =

γβv
dB/dr

(mµ)
c

(10)

If we set the rod radius a to be fap times the rms beam size σx,y,

σx,y =

√
εx,y β⊥
βvγ

and if the field at the surface is Bmax, then

β2
⊥ =

γβv(mµ) fap
Bmax c

√
εx,y β

γ βv

from which we get:

β⊥ =
(
fap (mµ)
Bmax c

)2/3

(γβv εx,y)
1/3

puting this in equation 6

εx,y(min) = (C(mat,E))1.5
(
fap (mµ)
Bmax c βv

) √
γ (11)

e.g. Bmax=10 T, fap=3, E=100 MeV, then β⊥ = 1.23 cm, and

ε(min)=100 (π mm mrad)
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1.4.3 At a Focus

ra
d

a

θ dr

i

L

The minimum beta obtainable at a focus is set by chromatic abberations,
i.e. momentum dependent effects. Assuming no external correction:

β(min) =
dr

θ
=
a

θ
dp/p = L dp/p

For a solenoid with axial filed B, and momentum p

L =
π

2
βo =

π (p)
c B

so

β(min) =
(
π (p)
c B

)
dp

p

ε(min) = CH2

(
π(E)
c B

)
dp

p

e.g. p=.17 MeV, B=5 T, dp/p=5%, β(min) = 1.8 cm, and

ε(min) = 82 π mm mrad

But as p falls, the possible coil thickness also falls. Below some mom we may
have to fix the current density i:

B ∝ p

B
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and so

β(min) ∝
√
γ

β

1.4.4 Compare Focusing

Assuming that the current limits the focus beta below 100 MeV, then we can
compare the methods as a function of the beam kinetic energy.
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We see that, for the parameters selected, no method allows transverse cooling
below about 80 (π mm mrad)

1.5 Simulation

• Calculations assume Gaussian scatter and straggling, and small angles,
and thus approximate.

• Accurate results require simulation

• Several ”local” codes
Two Documented codes:
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GEANT & ICOOL
Both have:

– Global fields
unlike MAD, TRANSORT etc.

– Choices of scattering and straggling formulations

– Standing Wave RF fields

– allow use of both

1. Maxwellian, or
2. ”hard edged” magnetic fields

– flexible Geometries

– Good tracking

The differences in handling bends discussed in section ??

1.6 Angular Momentum Problem

or: Why we reverse the Solenoids

In the absence of external fields and energy loss in materials, the angular
momentum of a particle is conserved.

But a particle entering a solenoidal field will cross radial field components
and its angular (r pφ) momentum will change.

∆(pφ) = ∆
(
c Bz r

2

)
If in the absence of the field the particle had ”canonical” angular momentum
(pφ r)can, then in the field it will have angular momentum:

pφ r = (pφ r)can +
(
c Bz r

2

)
r

so

(pφ r)can = pφ r −
(
c Bz r

2

)
r

If the initial canonical angular momentum is zero, then in Bz :

pφ r =
(
c Bz r

2

)
r

Material will reduce all momenta, both longitudinal and transverse.
Re-acceleration will not change the angular momenta.
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The angular momentum will continuously fall.

Consider the case of almost complete transverse cooling: all transverse mo-
menta are reduced to near zero leaving the beam streaming parallel to the axis.

pφ r ≈ 0

and

(pφ r)can = pφ r −
(
c Bz r

2

)
r = −

(
c Bz r

2

)
r

When the beam exits the solenoid, then this canonical angular momentum
becomes a real angular momentum and represents an effective emittance, and
severely limits the possible cooling.

pφ r(end) = −
(
c Bz r

2

)
r

The only reasonable solution is to reverse the field, either once, a few, or
many times.

1.6.1 Single Field Reversal Method

The minimum required number of field ”flips” is one.
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Figure: Axial Field, Angular Momentum, and
Canonical Angular Momentum, in an Ideal, Sin-
gle Field Reversal, Solenoid Cooling System.

After exiting the first solenoid, we have real coherent angular momentum:

(pφ r)3 = −
(
c Bz1 r

2

)
r

The beam now enters a solenoid with opposite field Bz2 = −Bz1.
The canonical angular momentum remains the same, but the real angular

momentum is doubled.

(pφ r)4 = −2
(
c Bz1 r

2

)
r

We now introduce enough material to halve the transverse field components.
Then

(pφ r)5 = −
(
c Bz1 r

2

)
r
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This is inside the field Bz2 = −Bz1. The canonical momentum, and thus the
angular momentum on exiting, is now:

(pφ r)6 = −
(
c Bz1 r

2

)
r − −

(
c Bz1 r

2

)
r = 0

1.6.2 Example of ”Single Flip”

From ”single flip alternative” in US Study 2

1.6.3 Alternating Solenoid Method

If we reverse the field frequently enough, no significant canonical angular mo-
mentum is developed.
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The Figure below shows the angular momenta and canonical angular mo-
menta in a simulation of an ”alternating solenoid” cooling lattice. It is seen that
while the coherent angular momenta are large, the canonical angular momentum
(in red) remains very small.
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1.7 Focussing Lattice Design

1.7.1 Solenoids with few ”flips”

• Coils Outside RF: e.g. FNAL 1 flip

• Coils interleeved: e.g. CERN
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”Flips”
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One must design the flips to match the betas from one side to the other.

For a computer matched flip, the following figure shows Bz vs. z and the
β⊥’s vs. z for different momenta.

alt sol B=1.25 (apr00 as1n)
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1.7.2 Lattices with many ”flips”

Alternating Solenoid
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Bz(max) = 3.4 (T)
dBz/dz(max) = 9.4 (T/m)

len (m)

FOFO
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Determination of lattice betas

• Track single near paraxial particle through many cells

• plot θx vs x after each cell

• fit ellipse: βx,y = A((x) / A(θx)

beta vs. Momentum
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• Solenoid has largest p acceptance

• FOFO shows β ∝ dp/p

• SFOFO more complicated, and better

1.7.3 Example of Multi-flip lattice

US Study 2 Super FOFO
Smaller Stored E than continuous solenoid ofer RF (≈ 1/5)
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1.7.4 Tapering the Cooling Lattice

• as emittance falls, lower betas

• maintain constant angular beam size

• maximizes cooling rate

• Adjust current, then lattice
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1.7.5 Hardware

At Start of Cooling

At end of Cooling
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1.7.6 Study 2 Performance
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With RF and Hydrogen Windows, Co ≈ 45 10−4

β⊥(end)=.18 m, βv(end)=0.85, So

ε⊥(min) =
45 10−4 0.18

0.85
= 0.95 (πmm mrad)

ε⊥
ε⊥(min)

≈ 2.3

so from eq. 7

dε

ε
(end) =

(
1 − ε

ε(min)

)
dp

p
≈ 0.57

dp

p

• A lower emittance would req. >> length

Muons accepted by Acceleration
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Without cuts

With 15 mm ⊥ ε cut (m rad)
and 150 mm ‖ ε cut (m)

length (m)

m
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0.064

• Gain Factor = 3

• No Further gain from length

• Loss from growth of long emit.

• Avoided if longitudinal cooling
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