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1 Preface

1.1 Units

When discussing the motion of particles in magnetic fields, I will use MKS units, but this

means that momentum, energy, and mass are in Joules and kilograms, rather than in the

familiar ’electron Volts’. To make the conversion easy, I will introduce these quantities in the

forms: [pc/e], [E/e], and [mc2/e], respectively. Each of these expressions are then in units

of straight Volts corresponding to the values of p, E and m expressed in electron Volts. For

instance, I will write, for the bending radius in a field B:

ρ =
[pc/e]

B c

meaning that the radius for a 3 GeV/c particle in 5 Tesla is

ρ =
3 109

5 × 3 108
= 2m

This units problem is often resolved in accelerator texts by expressing parameters in terms

of (Bρ) where this is a measure of momentum: the momentum that would have this value of

B × ρ, where

(Bρ) =
[pc/e]

c
For 3 GeV/c, (Bρ) is thus 10 (Tm), and the radius of bending in a field B=5 (T) is:

ρ =
(Bρ)

B
=

10

5
= 2m
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1.2 Useful Relativistic Relations dE = βv dp (1)
dE

E
= β2

v

dp

p
(2)

dβv =
dp

γ2
(3)

Note: I use βv to denote v/c to distinguish it from the Courant-Schneider β⊥

1.3 Emittance

normalized emittance =
Phase Space Area

π m c

The phase space can be transverse:px vs x, py vs y, or longitudinal ∆pz vs z, where ∆pz and

z are with respect to the moving bunch center.

If x and px are both Gaussian and uncorrelated, then the area is that of an upright ellipse,

and:

ε⊥ =
π σp⊥σx
π mc

= (γβv)σθσx (π m rad) (4)

ε‖ =
π σp‖σz

π mc
= (γβv)

σp
p
σz (π m rad) (5)

ε6 = ε2⊥ ε‖ (π m)3 (6)

Note that the π, added to the dimension, is a reminder that the emittance is phase space/π
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1.4 BetaCourant−Schneider of Beam x’

x

Upright phase ellipse in x′ vs x,

β⊥ =


width

height
of phase ellipse


 =

σx
σθ

(7)

Then, using emittance definition:

σx =

√√√√√ε⊥ β⊥ 1

βvγ
(8)

σθ =

√√√√√ ε⊥
β⊥

1

βvγ
(9)
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1.5 BetaCourant−Schneider at focus

��������

��������

��������

��������β⊥ σθ

σx σx = σo

√√√√√√1 +


 z
β⊥


2

β⊥ is like a depth of focus

As z → ∞
σx → σo z

β⊥
giving an angular spread of

θ =
σo
β⊥

as above in eq.7
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1.6 BetaCourant−Schneider of a Lattice

β⊥ above was defined by the beam, but a lattice can have a βo that ”matches” a beam

e,g. if continuous inward focusing force, as in a current carrying lithium cylinder (lithium

lens), then

z

u
B

I

d2u

dz2
= −k u

u = A sin


 z
βo


 u′ =

A

βo
cos


 z
βo




where βo = 1/
√
k

width

height
of phase ellipse =

û

û′
= βo

If βo = βbeam then all particles move arround the ellipse, and the shape, and thus βbeam

remains constant. i.e. the beam is matched to this lattice. If βo �= βbeam, then βbeam oscillates

about βo: often refered to as a ”beta beat”.

Note:

λ = 2π βo (10)
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1.7 Introduction to Solenoid Focussing

1.7.1 Motion in Long Solenoid

Consider motion in a fixed axial filed Bz, starting on the axis O with finate transverse momen-

tum p⊥ i.e. with initial angular momentum=0.

ψ

φ = ψ
2

ρ

r

y

x

O

p⊥

pO

ρ =
[pc/e]⊥
c Bz

(11)

x = ρ sin(ψ)

y = ρ (1 − cos(ψ))

dz

dψ
= ρ

pz
p⊥

For ψ < 180o φ < 90o:

r = 2ρ sin


ψ

2


 = 2ρ sin(φ)

dz

dφ
= 2 ρ

pz
p⊥
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1.7.2 Larmor Plane

If The center of the solenoid magnet is at O, then consider a plane that contains this axis and

the particle. This, for a particle with initally no angular momentum, is the ’Larmor Plane:

O

y

x

ρ

r

u

λhelix

λLarmor

y

z

u

z

u = 2ρ sin(φ) (12)

λHelix = 2π
dz

dψ
= 2π ρ

pz
p⊥

= 2π
[pc/e]z
c Bz

λLarmor = 2π
dz

dφ
= 2π 2ρ

pz
p⊥

= 4π
[pc/e]z
c Bz

The lattice parameter βo is defined in the Larmor frame, so

βo =
λLarmor

2π
=

2 [pc/e]z
c Bz

(13)

8



1.7.3 Focusing Force

In this constantB case, the observed sinusoidal motion in the u plane is generated by a restoring

force towards the axis O.

The momentum pO about the axis O (perpendicular to the Larmor plane), using eq.11 and

eq.12:

[pOc/e] = [p⊥c/e] sin(φ) = cBzρ
u

2ρ
=

cBz

2
u (14)

And the inward bending as this momentum crosses the Bz field is

d2u

dz2
= −


 cBz

2 [pzc/e]




2

u (15)

This inward force proportional to the distance u from the axis is an ideal focusing force

Note: the focusing ”Force” ∝ B2
z so it works the same for either sign, and ∝ 1/p2

z. Wheras

in a quadrupole the force ∝ 1/p So solenoids are not good for high p, but beat quads at low

p.

1.7.4 Entering a solenoid from outside

We will now look at a simple non-uniform Bz case. Let a particle start from the axis with finite

transverse momentum, but no angular momentum. After some distance with no field, it

reaches a radius u and then enters a solenoid with Bz. As it eneters the solenoid it crosses

radial field lines and receives some angular momentum.
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ra
d
iu

s
r

z

φ = 2π r
∫
B⊥ d�

φ = π r2 Bz

-5.0 -2.5 0.0 2.5 5.0

-2.5

0.0

2.5

Br

∆p⊥

∆[pc/e]⊥ =
∫
Br dz =

Bz r c

2
(16)

Sof for our case with zero initial transverse momentum,

[pc/e]⊥ =
∫
Br dz =

Bz r c

2

Which is the same as eq.14, and will lead to the same inward bending (eq.15), as when the

particle started inside the field.

In fact eq.15 is true no matter how the axial field varies
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1.7.5 Canonical Angular momentum

In general, for axial symmetry, a particle will have a conserved ”Canonical Angular Momentum”

Mo equal to the angular momentum outside the axial fields.

[Mc2/e]o = p⊥ r (Outdise the field)

Inside a varying field Bz(z), the real angular momentum will be:

[Mc2/e] = [Mc2/e]o +
r2 Bz c

2

But in the rotating Larmor Frame the anular momentum is always just the Canonical angular

momentum, and motion in that frame has only inward focusing forces, with no angular kicks.
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2 Transverse Cooling

p‖ less
p⊥ less

����������������

p‖ restored
p⊥ still less

����

�����

AccelerationMaterial

2.0.6 Cooling rate vs. Energy

(eq 4) εx,y = γβv σθ σx,y

If there is no Coulomb scattering, or other sources of emittance heating, then σθ and σx,y are

unchanged by energy loss, but p and thus βγ are reduced. So the fractional cooling dε /ε is

(using eq.2):

dε

ε
=

dp

p
=

dE

E

1

β2
v

(17)

which, for a given energy change, strongly favors cooling at low energy.
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But if total acceleration were not important, e.g. if the cooling is done in a ring, then there

is another criterion: The cooling per fractional loss of particles by decay:

Q =
dε/ε

dn/n
=

dp/p

d�/cβvγτ

=
dE/E 1/β2

v

d�/(cγβvτ )

= (cτ/mµ)
dE

d�

1

βv
Which only mildly favours low energy

2.0.7 Heating Terms

εx,y = γβv σθ σx,y

Between scatters the drift conserves emittance (Liouiville).

When there is scattering, σx,y is conserved, but σθ is increased.

∆(εx,y)
2 = γ2β2

v σ
2
x,y∆(σ2

θ)

2ε ∆ε = γ2β2
v


εβ⊥
γβv


 ∆(σ2

θ)

∆ε =
β⊥γβv

2
∆(σ2

θ)

e.g. from Particle data booklet
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∆(σ2
θ) ≈


14.1 106

[pc/e]βv




2
∆s

LR

∆ε =
β⊥
γβ3

v

∆E




 14.1 106

2[mc2/e]µ




2
1

LRdE/ds




Defining

C(mat,E) =
1

2


 14.1 106

[mc2/e]µ)




2
1

LR dγ/ds
(18)

then
∆ε

ε
= dE

β⊥
εγβ3

v

C(mat,E) (19)

Equating this with equation 17

dE
1

β2
v E

= dE
β⊥
εγβ3

v

C(mat,E)

gives the equilibrium emittance εo:

εx,y(min) =
β⊥
βv

C(mat,E) (20)

At energies such as to give minimum ionization loss, the constant Co for various materials

are approximately:
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material T density dE/dx LR Co
oK kg/m3 MeV/m m 10−4

Liquid H2 20 71 28.7 8.65 38

Liquid He 4 125 24.2 7.55 51

LiH 300 820 159 0.971 61

Li 300 530 87.5 1.55 69

Be 300 1850 295 0.353 89

Al 300 2700 436 0.089 248

Clearly Liquid Hydrogen is far the best material, but has cryogenic and safety complications,

and requires windows made of Aluminum or other material which will significantly degrade the

performance.

2.0.8 Rate of Cooling

dε

ε
=

(
1 − εmin

ε

) dp

p
(21)
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2.0.9 Beam Divergence Angles

σθ =

√√√√√ ε⊥
β⊥ βvγ

so, from equation 20, for a beam in equilibrium

σθ =

√√√√√√C(mat,E)

β2
vγ

and for 50 % of maximum cooling rate and an aperture at 3 σ, the angular aperture A of the

system must be

A = 3
√

2

√√√√√√C(mat,E)

β2
vγ

(22)

Apertures for hydrogen and lithium are plotted vs. energy below. These are very large

angles, and if we limit apertures to less than 0.3, then this requirement sets lower energy

limits of about 100 MeV (≈ 170 MeV/c) for Lithium, and about 25 MeV (≈ 75 MeV/c) for

hydrogen.

In fact θ = 0.3 is optimistic, as we will see in the tutorial.
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2.1 Focusing Systems

2.1.1 Solenoid

In a solenoid with axial field Bsol (from eq 13)

β⊥ =
2 [pc/e]

c Bsol

so

εx,y(min) = C(mat,E)
2 γ [mc2/e]µ

Bsol c
(23)

For E = 100 MeV (p ≈ 170 MeV/c), B = 20 T , then β ≈ 5.7 cm. and

εx,y ≈ 266(πmm mrad).
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2.1.2 Current Carrying Rod

In a rod carrying a uniform axial current, the azimuthal magnetic field B varies linearly with

the radius r. A muon traveling down it is focused:

d2r

dr2
= − B c

[pc/e]
= −


 c

[pc/e]

dB

dr


 r

so orbits oscillate with

β2
⊥ =

γβv
dB/dr

[mc2/e]µ
c

(24)

If we set the rod radius a to be fap times the rms beam size σx,y (from eq.8),

σx,y =

√√√√√εx,y β⊥
βvγ

and if the field at the surface is Bmax, then

β2
⊥ =

γβv[mc
2/e]µ fap

Bmax c

√√√√√εx,y β
γ βv

from which we get:

β⊥ =


fap [mc2/e]µ

Bmax c




2/3

(γβv εx,y)
1/3

puting this in equation 20

εx,y(min) = (C(mat,E))1.5

fap [mc2/e]µ
Bmax c βv


 √

γ (25)
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e.g. Bmax=10 T, fap=3, E=100 MeV, then β⊥ = 1.23 cm, and ε(min)=100 (π mm mrad)

The choice of a maximum surface field of 10 T is set by breaking of the containing pipe in

current solid Li designs. With liquid Li a higher field may be possible.

2.1.3 Compare Focusing

Comparing the methods as a function of the beam kinetic energy.

m
in

em
it

an
ce

(π
m

m
m

ra
d
)

Kinetic Energy (MeV)

10T Li Lens

Hydrogen & 20T Solenoid

2 3 4 5 6 7 8 9
10.0

2 3 4 5 6 7 8 9
102 103

0

100

200

300

We see that, for the parameters selected, The lithium rod achieves a lower emittance than

the solnoid despite its higher C value. Neither method allows transverse cooling below about

80 (π mm mrad)

A focusing lattice can, with limited momentum acceptance achieve β⊥ less than given for a

solenoid, but it probably can’t beat the lithium rod.
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2.2 Angular Momentum Problem

or: Why we reverse the solenoid directions

In the absence of external fields and energy loss in materials, the angular momentum of a

particle is conserved.

But a particle entering a solenoidal field will cross radial field components and its angular

momentum (r pφ) will change (eq.16).

∆([pc/e]φ) = ∆


c Bz r

2




If, in the absence of the field, the particle had ”canonical” angular momentum (pφ r)can, then

in the field it will have angular momentum:

[pc/e]φ r = (pφ r)can +


c Bz r

2


 r

so

[pc/e]φ r)can = [pc/e]φ r −

c Bz r

2


 r (26)

If the initial average canonical angular momentum is zero, then in Bz:

< [pc/e]φ r > =


c Bz r

2


 r

Material introduced to cool the beam, will reduce all momenta, both longitudinal and trans-

verse, random and average.
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Re-acceleration will not change the angular momenta, so the average angular momentum will

continuously fall.

Consider the case of almost complete transverse cooling: all transverse momenta are reduced

to near zero leaving the beam streaming parallel to the axis.

[pc/e]φ r ≈ 0

and there is now a finite average canonical momentum (from eq.26):

< [pc/e]φ r >can = −

c Bz r

2


 r

When the beam exits the solenoid, then this canonical angular momentum becomes a real

angular momentum and represents an effective emittance, and severely limits the possible

cooling.

< [pc/e]φ r >end = −

c Bz r

2


 r

The only reasonable solution is to reverse the field, either once, a few, or many times.
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2.2.1 Single Field Reversal Method

The minimum required number of field ”flips” is one.
B
z

0 1 2 3 45 6
-1
0
1

p φ

0 1 2 3 45 6
-2
-1
0

Stages along Length

(p
φ
) c

an

0 1 2 3 45 6
-1
0
1

After exiting the first solenoid, we have real coherent angular momentum:

([pc/e]φ r)3 = −

c Bz1 r

2


 r

The beam now enters a solenoid with opposite field Bz2 = −Bz1.

The canonical angular momentum remains the same, but the real angular momentum is
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doubled.

([pc/e]φ r)4 = −2


c Bz1 r

2


 r

We now introduce enough material to halve the transverse field components. Then

([pc/e]φ r)5 = −

c Bz1 r

2


 r

This is inside the field Bz2 = −Bz1. The canonical momentum, and thus the angular

momentum on exiting, is now:

([pc/e]φ r)6 = −

c Bz1 r

2


 r − −


c Bz1 r

2


 r = 0

2.2.2 Example of ”Single Flip” From ”single flip alternative” in US Study 2
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2.2.3 Alternating Solenoid Method

If we reverse the field frequently enough, no significant canonical angular momentum is devel-

oped.

The Figure below shows the angular momenta and canonical angular momenta in a simulation

of an ”alternating solenoid” cooling lattice. It is seen that while the coherent angular momenta

are large, the canonical angular momentum (in red) remains very small.
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25



2.3 Focussing Lattice Designs

2.3.1 Solenoid with few ”flips”

Coils Outside RF: e.g. FNAL 1 flip
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”Flips”

One must design the flips to match the betas from one side to the other.

For a computer designed matched flip between uniform solenoidal fields: the following figure

shows Bz vs. z and the β⊥’s vs. z for different momenta.

alt sol B=1.25 (apr00 as1n)

length (m)

B
z

(T
)

0.0 2.5 5.0 7.5
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0

1

2 steps .11 to .29 (GeV/c)
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β
(c

m
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0
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2.3.2 Lattices with many ”flips”

Bz(max) = 3.4 (T)
dBz/dz(max) = 9.4 (T/m)

len (m)
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z
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len (m)
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dBz/dz(max) = 7 (T/m)
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Determination of lattice betas

• Track single near paraxial particle through many cells

• plot θx vs x after each cell

• fit ellipse: βx,y = A((x) / A(θx)

beta vs. Momentum

Note ”stop bands” where particles are not transmitted

FOFO

Super FOFO

0.05 0.10 0.15 0.20 0.25 0.30 0.35
0.00

0.25

0.50

0.75

b
e
ta

(m
)

momentum (GeV/c)

• Alternating Solenoid has largest p acceptance

• FOFO shows β ∝ dp/p

• SFOFO more complicated, and better
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2.3.3 Example of Multi-flip lattice

US Study 2 Super FOFO

Smaller Stored E than continuous solenoid outside the RF (≈ 1/5)
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2.3.4 Hardware

At Start of Cooling

• This is the lattice to be tested in Muon Ionization Cooling Experiemnt (MICE) at RAL

• In study 2 the lattice is modified vs. length to lower β⊥ as ε falls

This keeps σθ and ε/εo more or less constant, thus maintains cooling rate
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2.3.5 Study 2 Performance

length (m)

e
m

it
p
e
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(m
m

)
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0
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2.2

12

With RF and Hydrogen Windows, Co ≈ 45 10−4

β⊥(end)=.18 m, βv(end)=0.85, So

ε⊥(min) =
45 10−4 0.18

0.85
= 0.95 (πmm mrad)

ε⊥
ε⊥(min)

≈ 2.3

so from eq. 21

dε

ε
(end) =


1 − ε

ε(min)


 dp

p
≈ 0.57

dp

p
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2.4 Mu/p with Cooling vs Accelerator Trans Acceptance

Using input from Study-2 Front-End (includes some mini-cooling)

length (m)

m
u
/
p

0 100 200
0.0

0.1

0.2

0.3

0.4

All

mu/p=.050 to .182 (ratio=3.61)
Acceptance 15 pi mm (As in Study 2)

mu/p=.162 to .241 (ratio=1.49)
Acceptance 30 pi mm (As in Japanese Proposal)

• Performance at 30 pi mm without cooling

≈ Performance at 15 pi mm with cooling

• Not a new idea:

Mori at KEK has proposed no cooling for a long time

• Cost of acceptance 15→30 pi mm may be less than for cooling

• If no cooling required, less R&D required for Neutrino Factory

• But we still need cooling rings for a Muon Collider
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3 Longitudinal Cooling

Following the convention for synchrotron cooling we define partition functions:

Jx,y,z =

∆ (εx,y,z)
εx,y,z

∆p
p

(27)

J6 = Jx + Jy + Jz (28)

where the ∆ε’s are those induced directly by the energy loss mechanism (ionization energy

loss in this case). ∆p and p refer to the loss of momentum induced by this energy loss.

In the synchrotron case, in the absence of gradients fields, Jx = Jy = 1, and Jz = 2.

In the ionization case, as we shall show, Jx = Jy = 1, but Jz is negative or small.

3.0.1 Transverse

From last lecture:
∆σp⊥
σp⊥

=
∆p

p

and σx,y does not change, so
∆εx,y
εx,y

=
∆p

p
(29)

and thus

Jx = Jy = 1 (30)
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3.0.2 Longitudinal cooling/heating without wedgesγ

z

σγ
γ

−∆γ

−∆γ − σγ ∆s d(dγ/ds)
dγ

σγ2 = σγ − σγ ∆s d(dγ/ds)
dγ

The emittance in the longitudinal direction εz is (eq.5):

εz = γβv
σp
p
σz =

1

m
σpσz =

1

m
σEσt = c σγ σt

where σt is the rms bunch length in time, and c is the velocity of light. Drifting between

interactions will not change emittance (Louville), and an interaction will not change σt, so

emittance change is only induced by the energy change in the interactions:

For a wedge with center thickness � and height from center h ( 2h tan(θ/2) = �), in dispersion

D (D = dy
dp/p

, or with eq.2: D = β2
v

dy
dγ/γ

) (see fig. above):

∆εz
εz

=
∆σγ
σγ

=
σγ ∆s d(dγ/ds)

dγ

σγ
= ∆s

d(dγ/ds)

dγ

and
∆p

p
=

∆γ

β2
vγ

=
�

β2
vγ


dγ
ds



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So from the definition of the partition function Jz:

Jz =
∆εz
εz
∆p
p

=

(
∆s d(dγ/ds)

dγ

)
∆s
β2
vγ

(
dγ
ds

) =

(
β2
v γ

d(dγ/ds)
dγ

)
(
dγ
ds

) (31)

Muon Energy (MeV)

re
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e
(d

E
/
d
x
)

10.0 102 103

1

2

3

4

A typical relative energy loss as a function of energy is shown above (this example is for

Lithium). It is given approximately by:

dγ

ds
= B

1

β2
v


1

2
ln(A β4

vγ
4 − β2

v


 (32)

where

A =
(2mec

2/e)2

I2
B ≈ 0.0307

(mµc2/e)

Z

A
(33)

where Z and A are for the nucleus of the material, and I is the ionization potential for that

material.

Differentiating the above:

δ(dγ/ds)

δγ
=

B

βv


 2

βvγ
− 1

(βvγ)3
ln(A β4

vγ
4) +

2

(βvγ)3



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Substituting this into equation 31:

Jz(no wedge) ≈ −
(

2
βvγ

− 1
(βvγ)3

ln(A β4
vγ

4) + 2
(βvγ)3

)
(

1
2 ln(A β4

vγ
4 − β2

v

) β3
vγ (34)
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J6

Jx, Jy

Jz

It is seen that Jz is strongly negative at low ener-

gies (longitudinal heating), ans is only barely posi-

tive at momenta above 300 MeV/c. In practice there

are many reasons to cool at a moderate momentum

around 250 MeV/c, where Jz ≈ 0. However, the

6D cooling is still strong J6 ≈ 2.

What is needed is a method to echange cooling be-

tween the transvers and longitudinal direction s. This

is done in synchroton cooling if focusing and bending

is combined, but in this case, and in general, one can

show that such mixing can only increase one J at the

expence of the others: J6 is conserved.

∆Jx + Jx + Jx = 0 (35)

and for typical operating momenta:

Jx + Jy + Jz = J6 ≈ 2.0 (36)
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3.0.3 Emittance Exchange

High dp/p

Low εn

Low dp/p

High εn

Material Magnet

�
�

�
�
�
�
�
�
�
�
�

	
	
	

	
	
	

	
	
	





• dp/p reduced

• But σy increased

• Long Emittance reduced

• Trans Emittance Increased

• ”Emittance Exchange”
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3.0.4 Longitudinal cooling with wedges and Dispersion

y

s

Beam

θ

�

h

Wedge

γ

z

σγ
γ

−∆γ

−∆γ − σγ
ds
dγ

dγ
ds

σγ2 = σγ − σγ
ds
dγ

dγ
ds

For a wedge with center thickness � and height from center h ( 2h tan(θ/2) = �), in dispersion

D (D = dy
dp/p, or with eq.2: D = β2

v
dy
dγ/γ ) (see fig. above):

∆εz
εz

=
∆σγ
σγ

=
σγ

ds
dγ

(
dγ
ds

)

σγ
=

ds

dγ


dγ
ds


 =


 �
h


 D

β2
v γ


dγ
ds




and
∆p

p
=

∆γ

β2
vγ

=
�

β2
vγ


dγ
ds




So from the definition of the partition function Jz:

Jz(wedge) =
∆εz
εz
∆p
p

=

(
�
h

)
D
β2
v γ

(
dγ
ds

)
�
β2
vγ

(
dγ
ds

) =
D

h
(37)

Jz = Jz(no wedge) + Jz(wedge) (38)

But from eq.35, for any finite Jz(wedge), Jx or Jy will change in the opposite direction.
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3.0.5 Longitudinal Heating Terms

Since εz = σγ σt c, and t and thus σt is conserved in an interaction

∆εz
εz

=
∆σγ
σγ

Straggling, from Perkins text book, converted to MKS:

∆(σγ) =
∆σ2

γ

2σγ
≈ 1

2σγ
0.06

Z

A


me

mµ




2

γ2


1 − β2

v

2


 ρ ∆s

From eq. 2: ∆E = Eβ2
v

∆p
p , so:

∆s =
∆E

dE/ds
=

1

dE/ds
E β2

v

∆p

p

so
∆εz
εz

=
0.06

2σ2
γ

Z

A


me

mµ




2

γ2


1 − β2

v

2


 ρ

β2
v E

dE/ds

∆p

p

This can be compared with the cooling term

∆εz
εz

= − Jz
dp

p

giving an equilibrium:

σp
p

=




me

mµ




√√√√√√ 0.06 Z ρ

2 A (dγ/ds)




√√√√√√ γ
β2
v


1 − β2

v

2


 1

Jz
(39)

For Hydrogen, the value of the first parenthesis is ≈1.36 %.
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Without coupling, Jz is small or negative, and the equilibrium does not exist. But with equal

partition functions giving Jz ≈ 2/3 then this expression, for hydrogen, gives: the values ploted

below.

The following plot shows the dependency for hydrogen

mom (GeV/c)

σ
p
/p

(%
)

2 3 4 5 67890.1 2 3 4 5 67891.0 10.0
0.0

2.5

5.0

7.5

10.0

12.5

15.0

It is seen to favor cooling at around 200 MeV/c, but has a broad minimum.
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3.1 Emittance Exchange Studies

• Attempts at separate cooling & exch.

– Wedges in Bent Solenoids

– Wedges in Helical Channels1

Poor performance & problems matching between them

• Attempts in rings with alternate

cooling & exchange

– Balbakov2 with solenoid focus

achieved Merit=90

• Attempts in rings with combined cooling & exchange

– Garren et al3 Quadrupole focused ring

achieved Merit ≈15

– Garren et al: Bend only focusing

achieved Merit ≈100

– Palmer et al4

achieved Merit ≈140

1MUC-146, 147, 187, & 193
2MUC-232 & 246
3Snowmass Proc.
4MUC-239
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3.2 Example RFOFO Ring

3.2.1 Introduction

R.B. Palmer R. Fernow J. Gallardo5, and Balbekov6

33 m Circumference

200 MeV/c

Injection/Extraction
Vertical Kicker

200 MHz rf 12 MV/m

Alternating Solenoids
Tilted for Bending By

Hydrogen Absorbers

5Fernow and others: MUC-232, 265, 268, & 273
6V.Balbekov ”Simulation of RFOFO Ring Cooler with Tilted Solenoids” MUC-CONF–0264
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3.2.2 Lattice

SFOFO as in Study 2
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RFOFO has Reversed Fields
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SFOFO
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RFOFO chosen

• Less Mom acceptance

BUT

• All cells the same → Fewer resonances
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3.2.3 Coil Layout

Tilt Coils to get Bend
Tilted Solenoids (shown × 2)

RF Cavities H2 Absorber
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3.2.4 Beta and Dispersion
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y dispersion
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Dispersion is rotating back and forth
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3.2.5 Params for Simulation

Coils

gap start dl rad dr tilt I/A
m m m m m rad A/mm2

0.310 0.310 0.080 0.300 0.200 0.0497 86.25

0.420 0.810 0.080 0.300 0.200 0.0497 86.25
0.970 1.860 0.080 0.300 0.200 -.0497 -86.25
0.420 2.360 0.080 0.300 0.200 -.0497 -86.25

amp turns 5.52 (MA)
amp turns length 13.87326 (MA m)
cell length 2.750001 (m)

Wedge

Material H2

Windows none
Radius cm 18

central thickness cm 28.6
min thickness cm 0

wedge angle deg 100
wedge azimuth from vertical deg 30

RF

Cavities 6

Lengths cm 28
Central gaps cm 5

Radial aperture cm 25
Frequency MHz 201.25

Gradient MV/m 16
Phase rel to fixed ref deg 25
Windows none
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3.2.6 Performance

Using Real Fields, but no windows or injection insertion

Merit =
n

no

ε6,o
ε6

=
Initial phase density

final phase density

turns

n/no = 1543 / 4494

0 5 10 15 20 25
10−2

0.1

1.0

10.0

102

dp/p 10.2 to 3.6 %

n/no at 13 turns 0.50

ε ⊥ 11.4 to 2.43 (π mm)
ε ‖ 43.9 to 2.65 (π mm)

ε6 5.3 to 0.017 (π mm)3

Merit at 13 turns 139 Falls after 13 turns from decay loss
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3.2.7 Compare with Linear theory

D = 7 cm, � = 28.6 cm, and

h =
�

2 tan(100o/2)
= 12 cm

so

Jz =
D

h
= 0.58

Since there is good mixing between x and y so Jx = Jy,

and from equ 36, ΣJi ≈ 2.0, so

Jx = Jy ≈ 2 − 0.58

2
= 0.71

i.e. The wedge angle was chosen to give nearly equal partition functions in all 3 coordinates,

and gives the maximum merit factor.

The theoretical equilibrium emittances are now ( eq.20):

ε⊥(min) =
C β⊥
J βv

=
38 10−4 0.4

0.71 0.85
= 2.5 (π mm)

c.f. 2.43 (π mm) observed, which is very good agreement considering the approximations used.

And from equation 39 we expect

dp

p
(min) ≈ 2.3%

compared with 3.6% observed, which is less good agreement. This may arise from the poorer

approximation of the real Landau scattering distribution by a simple gaussian.
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3.2.8 Insertion for Injection/Extraction

.
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• First Simulation gave Merit = 10

Synchrotron tune = 2.0: Integer

• Increase energy, wedge angle, and add matching.

• Merit achieved ≈ 100
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3.2.9 Further Problems under study

• RF windows must be very thin (≤ 50 microns)

RF at 70 deg will help
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• Design of wedge absorber
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• Absorber heating is high for many passes

• The kicker (problem common to all rings)
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3.3 Kickers

3.3.1 Minimum Required kick

py

y

py

y

py

y

Septum

Before Kick After Kick After π/2

Beam

L

Y

X

Bx

fσ =
Ap

σ
µ = inf F =

Y

X

I = F


4 f 2

σ mµ

µo c


 εn

L

V =


4 f 2

σ mµ R

c


 εn

τ

U = F


m

2
µ 8 f 4

σ R

µo c2


 ε2n

L

• muon εn � other εn’s

• So muon kicker Joules � other kickers

• Nearest are p̄ kickers
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Compare with others

For ε⊥ = 10 πmm,(Acceptance=90 pi mm) β⊥ = 1m, & τ=50 nsec:

After correction for finite µ and leakage flux:
µ Cooling CERN p̄ Ind Linac∫

Bd� Tm .30 .088

L m 1.0 ≈5 5.0

trise ns 50 90 40

B T .30 ≈0.018 0.6

X m .42 .08

Y m .63 .25

V1turn kV 3,970 800 5,000

Umagnetic J 10,450 ≈13 8000

Note

• U is 3 orders above p̄, and 1 order of magnitude more than 30 pi mm FFAG

• Same order as Induction

• And t same order as a few m of induction linac

• But V is too High for single turn kicker
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3.3.2 Induction Kicker

• Drive Flux Return

• Subdivide Flux Return Loops

Solves Voltage Problem

• Conducting Box Removes

Stray Field Return
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Works with no Ferrite
• V = the same

• U≈ 2.25×
• I≈ 2.25×
• No rise time limit

• Not effected by solenoid fields

End View
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• If non Resonant: 2 Drivers

for inj. & extract.

Need 24 ×2 Magamps (≈ 20 M$)

• If Resonant: 1 Driver, 2×efficient

Need 12 Magamps (≈ 5 M$)
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.3.3.3 Magnetic Amplifiers

Used to drive Induction Linacs

similar to ATA or DARHT
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Magamp principle

Storage C

Saturable L

Kicker L

Initially Unsaturated, L = L1 is large:

τL =
√
(L + L1)C is slow

The current I rises slowly:

I = Io sin


 t
τL




When the inductor saturates

L = L2 is small:

τS =
√
(L + L2)C is fast

After approx π phase

Inductor regains its high inductance

The oscillation slows before reversing.
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Pspice Simulation

a) Single stage

Circuit Model (Reginato)
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3.4 Ring Cooler Conclusion

• Need for very thin windows is greater than for linear coolers

• Work needed on Hydrogen wedge design

• Much Work needed on Insertion

but probably doable

• The Kicker is the least certain

• Needs shorter bunch train than linear

→ greater dp/p or less acceptance

→ Worse performance

• Needed for Muon Collider, but maybe not useful for Neutrino Factory
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