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Understanding Half-Integer
Resonance

❍ Imagine varying a parameter, say it is
momentum

❍ Have half-integer finite-width stopband
❍ Start stable
❍ Then metastable: eigenvalues -1
❍ Then unstable: one eigenvalue growing, other

damping
❍ Returns
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Half-Integer Resonance
With Damping

❍ Single thin absorber
❍ Similar behavior to undamped
❍ Damped eigenvalues collide when undamped

still stable
❍ Undamped eigenvalues are 1, one damped

eigenvalue is 1
❍ If unstable without damping, damping cannot

stabilize

10



Half Integer Resonance Crossing
With Damping
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16



Half Integer Resonance Crossing
With Damping
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PIC Speculations

❍ Has a finite bandwidth
❍ Center of band is most unstable point
❍ Extends between points where damped

eigenvalues collide
❍ One direction always damps
❍ Other direction may damp or grow
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Perturbation Computation
Basic Equations

❍ Only linear here

z(s) = M(s; 0)z(0) + z0(s)

❍ Homogeneous linear equation of motion
dM(s; 0)

ds
= A(s)M(s; 0) M(0; 0) = I
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Perturbation Expansion

❍ A(s) = A0(s) + ǫA1(s),
M(s; 0) = M0(s; 0) + ǫM1(s; 0)

❍M0(s; 0) satisfies
dM0(s; 0)

ds
= A0(s)M0(s; 0) M0(0; 0) = I

❍ Thus, solution for M1(s; 0) is

M1(s; 0) =
∫
s

0
M0(s; s̄)A1(s̄)M0(s̄; 0) ds̄
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Gives Everything, Works
Everywhere

❍ Not just tunes: full transform
❍ Symplectic not necessary
❍ Lattice need not be stable
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Example: Focusing Perturbation
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Propagation of Covariance
Matrix

❍ General rule for covariance matrix

Σ(s) = M(s; 0)Σ(0)MT(s; 0)

❍ Perturbation: Σ(s) = Σ0(s) + ǫΣ1(s), Σ1(0) = 0

Σ1(s) = M0(s; 0)Σ0(0)M
T
1 (s; 0)

+M1(s; 0)Σ0(0)M
T
0 (s; 0)

❍ Integral from 0 to s, linear in A1(s)
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