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Understanding Half-Integer
Resonance
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0 Imagine varying a parameter, say It Is
momentum

0 Have half-integer finite-width stopband
0 Start stable

0 Then metastable: eigenvalues -1

damping
0 Returns
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0 Then unstable: one eigenvalue growing, other
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Half-Integer Resonance S\
With Damping gt/l

0 Single thin absorber
0 Similar behavior to undamped

0 Damped eigenvalues collide when undamped
still stable

0 Undamped eigenvalues are 1, one damped
eigenvalue is 1

0 If unstable without damping, damping cannot
stabilize
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Half Integer Resonance Crossing
With Damping
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Half Integer Resonance Crossing
With Damping
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Half Integer Resonance Crossing

With Damping ﬂ/{

BROOKHFAEN ] 3
NATIONAL LABORATORY



Half Integer Resonance Crossing < \} -
With Damping Yoo oot
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Half Integer Resonance Crossing
With Damping
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Half Integer Resonance Crossing < /;(
With Damping 2-.-

dh




Half Integer Resonance Crossing
With Damping
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PIC Speculations QT‘/(

S

0 Has a finite bandwidth
0 Center of band I1s most unstable point

0 Extends between points where damped
eigenvalues collide

0 One direction always damps
0 Other direction may damp or grow
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Perturbation Computation
Basic Equations
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0 Only linear here
z(s) = M(s;0)z(0) + zo(s)
0 Homogeneous linear equation of motion
dM(s;0)
ds
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= A(s)M(s;0) M(0;0) =

I
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Perturbation Expansion QT‘/(

1 A(s) = Ap(s) + €Aq(s),
M(s;0) = My(s;0) + eM;(s;0)
0 My(s;0) satisfies
dM()(S; O)
ds
0 Thus, solution for Mj(s;0) is

M (5;0) = /O " Mo(s:5) Ay (5) Mo(5: 0) ds

= Ap(s)Mp(s;0) My(0;0) =1
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Gives Everything, Works %/'(
Everywhere QT’

0 Not just tunes: full transform
0 Symplectic not necessary
0 Lattice need not be stable
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Example: Focusing Perturbation
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Propagation of Covariance ) }(j

. Te
Matrix CAdNG

0 General rule for covariance matrix
>(s) = M(s;0)Z(0)M(s;0)
0 Perturbation: X(s) = Xo(s) + €Xq(s), 21(0) =0
>1(s) = My(s;0)Zo(0) M (s;0)
+ Mi(s;0)Z0(0) M, (s;0)
0 Integral from O to s, linear in A;(s)
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