
Longitudinal Phase Space Distortion in

FFAGs

J. Scott Berg
Brookhaven National Laboratory

27 April 2005



Outline

● Types of Machines for Acceleration

● What is an FFAG?

● Longitudinal dynamics in one type of FFAG

● Calculation of longitudinal phase space distortion
◆ “Emittance” growth
◆ Ellipse distortion
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Types of Machines for Acceleration

● Linac
◆ Accelerates extremely rapidly
◆ All sorts of other good properties
◆ Only a single pass through the RF: expensive

● Recirculating linac (e.g., CEBAF)
◆ Make multiple passes through the same linac: save money
◆ Still accelerate very rapidly
◆ Need a separate arc for each pass
◆ Number of passes limited (typically 5 or so)

★ Beam overlap in successive passes
★ Complexity of switchyard
★ Separate arcs cost money
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Types of Machines for Acceleration

● Synchrotron
◆ Make a huge number of passes through the same cavity
◆ Increase magnet fields in proportion to the reference

momentum
★ Thus, the beamline effectively deals with only a small energy

range (the energy spread in the beam)
★ Acceleration rate limited by how fast you can ramp magnets
★ RF frequency also must change for nonrelativistic particles.

This may also limit the acceleration rate.
● Cyclotron

◆ Magnetic fields don’t vary: can accelerate quickly
◆ Isochronous, so RF frequency doesn’t vary
◆ Many passes through same cavity
◆ Orbit position changes as you accelerate
◆ Weak focusing: the machine is HUGE
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What is an FFAG?

● FFAG stands for Fixed Field Alternating Gradient

● Make many passes through your RF cavities: reduce costs

● A single beamline for all energies (a factor of 2 or more in
momentum)

● Magnetic fields don’t vary as you accelerate: allows for rapid
acceleration
◆ These machines are probably not interesting if you don’t want to

accelerate rapidly

● Alternating gradient focusing gives stronger focusing
◆ Beam size smaller
◆ Closed orbits at different energies closer together (smaller

dispersion)
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Scaling FFAGs

● FFAGs were originally developed in the 50s.

● They created a machine with exactly zero chromaticity over a
large energy range
◆ The trick: make the magnetic field in the midplane be of the

form By(θ)(r/r0)
k, where θ and r are cylindrical coordinates

with respect to the center of the machine.
◆ Exercise for the listener:

★ Write out the Hamiltonian in r and θ
★ Use Maxwell’s equations to construct vector potentials as an

infinite series
★ Demonstrate that by applying a linear transform which only

depends on energy, the motion becomes independent of
energy!
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Scaling FFAGs (cont.)

● Tunes and momentum compaction (defined carefully) are
independent of energy

● Phase space identical for all energies except for
energy-dependent linear transform

● Just as in synchrotron, find a good operating point and you stay
there

● Get a kind of adiabatic invariance of phase space

● Closed orbits are geometrically similar

● KEK has built and operated these things recently!
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Scaling FFAG: Closed Orbits
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The KEK PoP FFAG
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Non-Scaling FFAGs

● Eliminate the scaling properties of the “scaling” FFAG
● Benefits:

◆ Smaller magnet apertures
◆ More isochronous: don’t vary RF frequency as much
◆ Can use linear magnets: better dynamic aperture at fixed

energy

● Problem: no longer have zero chromaticity. Resonances!
◆ Have extremely high degree of symmetry

★ All cells are identical
★ Cells are short (doublet, triplet), with tune below 0.5

◆ Linear magnets can minimize driving of these resonances
◆ Rapid acceleration means we don’t have much of an effect from

resonances
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Time of Flight

● FFAGs are not isochronous

● Can vary RF frequency to compensate

● If you’re trying to accelerate very quickly (muons!), can’t vary RF
frequency fast enough
◆ You must accelerate fast enough to avoid getting out-of-sync

with the RF

● Minimize time-of-flight range: time-of-flight nearly parabolic
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Time-of-Flight vs. Energy
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Goal of the Calculation

● Beam is being transferred from one machine to another

● We can straightforwardly manipulate the phase space ellipse
linearly

● Any nonlinear distortions to the ellipse are difficult to reverse at
best

● These nonlinear distortions cause problems
◆ Beams sizes/energy spreads/whatever are larger than desired
◆ A correction scheme may not be able to fix it

● Want to quantify these distortions

● Use the results to specify a machine design
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Longitudinal Dynamics

● Want to study the longitudinal dynamics in the system with
◆ Parabolic time-of-flight as a function of energy
◆ RF smoothly distributed around the ring

● In particular, we want to characterize the longitudinal phase space
distortion

● Time of flight is approximately a parabolic function of energy

dτ

ds
= ∆T

(

2E − Ei − Ef

∆E

)2
− T0,

● Energy gain from RF

dE

ds
= V cos(ωτ),
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Normalized Variables

● Change of variables

x = ωτ p =
E − Ei

∆E
u =

s

ω∆T

◆ Accelerate from p = 0 to p = 1

● New equations of motion

dx

du
= (2p − 1)2 − b

dp

du
= a cos x a =

V

ω∆T∆E
b =

T0
∆T

● Hamiltonian
1
6
(2p − 1)3 −

b

2
(2p − 1) − a sin x
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Parameter Regimes

● Dynamics depend completely on two dimensionless parameters, a
and b

● To pass particles through from p = 0 to p = 1, require a > b3/2/3

● For central particle to cross p = 0 and p = 1, require
a > |1/6 − b/2|

● Small a, smaller phase space region for bunch

● Requirements together lead to minimum a of 1/24

◆ Smaller a gives more emittance growth

● Based on design requirements (emittance, allowed emittance
growth, etc.), determine a and b
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Particles Passing Through
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Particles Barely Pass
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Particles Can’t Pass
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Central Particle Doesn’t Make It
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Central Particle Just Makes It
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Lower a
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Allowed Region of Parameter Space
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The Dragt-Finn Factorization

● A general symplectic map can be described by a “Dragt-Finn
Factorization”:

e−:g1: · · · e:f5:e:f4:e:f3:e:f2:e:f1:

◆ I won’t go into what precisely this means. . .

● fn is a nth-order homogeneous polynomial in the phase space
variables

● f1 describes the final reference point, g1 the initial reference point

● f2 is the linear part of the map

● The rest are nonlinear
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Computing the Dragt-Finn
Factorization

● Start with one solution of the equations of motion z0(u)

● Transform phase space variables z to w = z − z0(u)

● The Hamiltonian can be written as h2 + h3 + h4 + h5 + · · · , where
hn is a homogeneous nth order polynomial in w

● To compute e:f2: = M , M is a matrix,

dM

du
= JH2M h2 =

1
2
w

TH2w

and J is the symplectic metric matrix
● To compute f3,

df3
du

= −e:f2:h3

● Higher order terms have more complicated equations

25



Symmetries of this Problem

● The problem is invariant under the transformation x → −x,
p → 1 − p

● The reference orbit we use passes through (x, p) = (0, 1/2)

● Thus, the map can be written as

M = exp
(

2:e−:f2:f5:
)

exp
(

2:e−:f2:f3:
)

= e:g3:e:g5:

● The fn are computed going from the middle to the edge of the
phase space
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Compute Emittance Growth

● Write gn as

gn =
n
∑

k=0
gnkx

n−kpk

● Calculate the emittance using the second-order covariance matrix
√

det{〈ww
T 〉 − 〈w〉〈w〉T}

● “Emittance” growth is “bad behavior” that we want to minimize
● To lowest order, the emittance growth for a circular distribution is

3〈J2〉(9g2
30 − 6g30g32 + 5g2

32 + 9g2
33 − 6g33g31 + 5g2

31)/4

− 〈J〉2[(3g30 + g32)
2 + (3g33 + g31)

2]/2

◆ 〈J〉 = ǫ is the emittance; 〈J2〉 > 〈J〉2

◆ This can be negative if 〈J2〉 < (4/3)〈J〉2 (equality for uniform)!
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Computing Emittance Growth

● For given a and b, compute g3

● Transform g3 with a linear transform corresponding to the
orientation of the incoming ellipse
◆ Minimize emittance growth over that transform (two free

parameters)

● Minimize the result with respect to b

● Have emittance growth as a function of a
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Emittance Growth vs. a
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Emittance Growth Analysis

● For small a, ∆ǫ/(ǫ2) ∝ (a − 1/24)−2

◆ Time-of-flight is proportional to − log(a − 1/24)

◆ Recall equation for linear matrix M = e:f2:: dM/du = JH2M

◆ Thus, matrix elements of M can be exponential in the
time-of-flight, or proportional to (a − 1/24)−1

◆ Recall df3/du = −e:f2:h3
◆ Thus f3 can also be proportional to (a − 1/24)−1

◆ Emittance growth is quadratic in f3, thus proportional to
(a − 1/24)−2
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Emittance Growth Analysis (cont.)

● Emittance growth is smaller for smaller 〈J2〉/ǫ2

● To use:
◆ Compute emittance in normalized coordinates
◆ Choose acceptable emittance growth
◆ Find a which gives that emittance growth

● Optimal b is independent of 〈J2〉/ǫ2

● For small a, optimal b is the minimum b

◆ Can be negative!

● Optimal ellipse orientation is tilted, even though initial phase
space trajectories are flat
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Optimal b
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Allowed Region of Parameter Space
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Time-of-Flight vs. Energy
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Optimal Orientation
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After FFAG
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Bunch Being Accelerated

-0.5π -0.25π 0π 0.25π 0.5π
RF Phase

0

0.2

0.4

0.6

0.8

1
(E

-E
m

in
)/

∆E

37



Emittance Reduction Example

● Before, found that for some cases to lowest order, emittance went
down!

● What does this mean?

● Properly choose g3 to get “emittance reduction”

● Nearly uniform distribution, but weighted slightly to the outside.
0.6% emittance reduction

● Distribution more heavily weighted to the outside: 6.3% emittance
reduction
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Nearly Uniform: Before
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Nearly Uniform: After
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Ring Distribution
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Emittance Reduction: Analysis

● Phase space area occupied and local density stay the same! No
violation of phase space area conservation
◆ Reduction is an artifact of the second-order covariance matrix

computation

● Distribution is getting nonlinearly shifted toward the left center.
◆ Particles are getting concentrated near that point, reducing

computed emittance
◆ With a more uniform distribution, particles are also pushed away

from that point
◆ Ring-like distribution has fewer particles being pushed away

● Emittance (from second-order covariance matrix) may not always
characterize the desired behavior
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Individual Particles
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Ellipse Distortion

● Emittance growth seems to be a problematic criterion

● Potentially better criterion for FFAG performance: ellipse distortion

● Choose w0 and symmetric B with determinant 1 which minimizes

sup
∣

∣

∣

∣

(w − w0)
TB(w − w0) − 2J

∣

∣

∣

∣

◆ w is phase space point at the end which started on an ellipse at
the beginning

◆ J is the “action” value on the original ellipse

● Result is first order in g3

44



Ellipse Distortion (cont.)

● As before, plot ellipse distortion vs. a

◆ Minimized over initial ellipse orientation
◆ Minimized over b

● Note different qualitative behaviors
◆ Emittance growth was proportional to ǫ2; action distortion is

proportional to (2J)3/2. Equivalently, radius distortion is
proportional to r2.

◆ Coefficient is proportional to (a − 1/24)−1, whereas for
emittance growth it was (a − 1/24)−2

◆ Reasonable from above analysis
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Ellipse Distortion vs. a
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Ellipse Distortion with Shift

● Leaving out two effects
◆ Amplitude-dependent shift of the ellipse center
◆ Amplitude-dependent distortion of the ellipse shape
◆ If we include these, then we don’t care where the center of the

ellipse is; we only care about the outer boundary enclosing all
particles

● Now, trying to minimize

sup
∣

∣

∣

∣

[w − w0(J)]TB(J)[w − w0(J)] − 2J
∣

∣

∣

∣

◆ Center and matrix now depend on amplitude J

● Choose term first order in J in w0(J) (2 parameters) and initial
ellipse orientation (2 parameters) to kill lowest-order effect (4
parameters)
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Ellipse Distortion vs. Amplitude
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Ellipse Distortion with Shift

● The miracle: the term in B(J) first order in J can eliminate the
next order terms
◆ Would not be true without our symmetry: we would have g4
◆ The symmetry breaking in the real machine is small:

approximation may still be good
● Result is cubic in g3 and first order in g5
● Different characteristic behavior

◆ ∆J ∝ (2J)5/2, compared to ∆J ∝ (2J)3/2 without shift removed,
or δǫ ∝ ǫ2 for emittance growth

◆ ∆J ∝ (a − 1/24)−3, compared to ∆J ∝ (a − 1/24)−1 without shift
removed, or ∆ǫ ∝ (a − 1/24)−2 for emittance growth
★ Terms cubic in g3 dominate when a − 1/24 small

● Good for neutrino factory: don’t care about low amplitude particles
● May not be as good for collider
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Ellipse Distortion, Shift Removed
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Conclusions

● Have developed a method for characterizing longitudinal distortion
in FFAGs

● Calculation can be used to determine machine design
specifications from requirements on longitudinal ellipse distortion

● The technique is a general one, useful for characterizing the
performance of single-pass systems (linacs, transfer lines)
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