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Abstract



We present a numerical study of the localized transverse magnetic de-
fect modes in a two-dimensional, triangular-lattice photonic crystal. The
sample consists of an array of circular, air-cylinders in a dielectric medium
(GaAs). The defect modes were calculated by using a parallel version of
the finite-difference time-domain method on the Yee mesh. To validate our
computations the results for the transverse electric case were checked against
experimental results and the numerical results using a different method. We
study the spatial symmetry for TM modes, obtained by changing the dipole
excitation frequency. Also, we vary the defect-cylinder radius to tune the
resonant frequency across the band gap. The TM mode is found to be highly

localized at the defect in the photonic lattice.
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I. INTRODUCTION

Photonic crystals are a novel class of optical materials fabricated with at least two dif-
ferent dielectric permittivities in a periodic arrangement. They have the ability to suppress,
enhance, or otherwise control the emission of light in a selected frequency range by altering
the density of states. A complete photonic band gap (PBG), i.e. a range of frequencies for
which light cannot propagate through the crystal in any direction, is a spectral region where
the density of states in an infinite crystal vanishes. Interest in photonic crystals has grown,
since attention was independently directed to their unusual electromagnetic properties by
Yablonovitch and John in 1987 [1], [2]. A defect in the sample can embed a local mode
whose resonant frequency appears inside the band gap. The field energy is also confined
to a region close to the defect. This defect mode acts like a cavity and its electromagnetic
emission rate can be calculated by applying Fermi’s Golden rule, which establishes a pro-
portionality relation between the emission rate and the product of the mode density and of
the matrix element for the field-atom interaction.

Subsequent developments in the field produced many potential applications based on a
new basic features of photonic crystals: the symmetry of the eigen-modes, the resonance
localization of light in a bulk material, and the suppression of spontaneous emission. The
latter two properties are a consequence of a complete PBG. Emission rate calculations
motivate further investigations of localized eigen-modes of the radiation field. Especially
interesting is to achieve a high quality factor (Q) and confine the mode to a small volume
[3]. These properties can be realized by introducing a defect in a photonic microstructure
8].

In this paper we simulate numerically the electromagnetic radiation process by placing an
oscillating dipole moment into the photonic crystal. Photonic crystals may also be applied to
the design of low threshold lasers. The dipole placed in or near the dielectric defect radiates
into the lasing mode. The results provide the eigen-mode symmetry and profile in the active

region of the laser. Previous calculations on defect modes have used a number of numerical



techniques: plane-wave expansion methods [4], [15], [6], finite difference algorithms based on
the scalar wave equation [7], and finite-difference time domain methods [8]. We developed
a parallel version of the finite difference-time domain method, which can equally well deal
with complex geometries and finite boundaries. In addition, we present a detailed study of
a TM defect mode.

The underlying theory and the computational methods used in calculating the elec-
tromagnetic field are discussed in the following section. Our program is validated by a
calculation of a transverse electric defect mode for a square and triangular lattice of dielec-
tric rods. In these cases both theoretical and experimental results are available. We show
agreement among our results, experiment, and previously published result. In Section 3 we
examine the TM defect modes of a triangular lattice of air-rods. T'wo defect modes are iden-
tified corresponding to the F; and By symmetry for the Cg, point group. We examine the
dependence of the resonance frequency and energy localization in the neighborhood of the
defect with defect radius. Special attention has been given to observations of defect-mode
localization (measured as the field energy in a central, defect photonic lattice cell). This is
the property that ultimately determines the applicability of these modes and structures to

photonic devices (as it is closely related to the Q-factor in finite structures).

II. METHODS OF CALCULATION

The theory of dipole radiation in arbitrary photonic crystals has been developed by
Sakoda and Ohtaka [9], based on a Green’s function formalism. Our analysis starts with

Maxwell’s equations:

V - {e(r)E(r, ) + 4nPq(r, t)} = 0, (1)



VxEmﬂ:—%%Hmﬂ, (3)

V x H(r,t) = %%{e(r)E(r, t) + 4nPy(r, 1)}, (4)

where €(r) denotes the position-dependent dielectric constant of the photonic lattice.
e(r) is a periodic function except for disorder caused by dielectric defect. Py(r,t) is the

polarization field of the oscillating dipole, whose explicit complex form is:

Pu(r,t) = pd(r — ro) exp(—iwt). (5)

Here, u, ry, and w, are the electric dipole moment, dipole’s position vector, and the
angular driving frequency, respectively. § denotes the Dirac delta function.

The method developed for regular lattices can be applied to our problem, adding the
defect mode to the extended Bloch states. Hereafter, E4(r) stands for the eigen-function
of the defect mode and wy for its eigen-angular frequency. With the assumption that w is
close to wy and neglecting the contribution from all other modes, the complex electric field

in presence of the defect is:

2rwa{p - B (r,) }Eq(r) exp(—iwt)
B V(w — wyg +il) ’ ©)

E(r,t) ~

where E,; is the normalized electric field:

Lqmmmmazv (7)

In Eq. 6, ' is the decay rate of the defect mode. V is the volume over which periodic
boundary conditions are imposed. The electromagnetic energy U emitted per unit time by

the oscillating dipole placed at ry is found from the expression (see [9]):



1wyl |u - Ea(ro) [

U= _V{(w—wd)Z—l-F?}' (®)

From the last equation it follows that the frequency dependence of U determines the
eigen-angular frequency of the defect mode wy as the resonant frequency. We developed a
numerical procedure to find the frequency dependence of U.

We apply the finite-difference time-domain method to solve Maxwell equations (Eq. 1 -
4). More specifically, we applied the non-dissipative Yee’s algorithm with a duality relation
between the spatial representations of the electric and magnetic fields that represents both
the differential and integral forms of Maxwell equations, Ref. [10] and [11]. The Yee mesh is
divergence-free with respect to the electric and magnetic fields and it is suitable for specifying
field boundary conditions and singularities.

To shorten the computational run time we developed a parallel code, which was run
on a Pentium III linux cluster (the results described here are obtained from runs on 31
processors). The computational domain consists of 19 photonic lattice cells in the periodic
structure for € in the z and y direction and 8 mesh cells in the z direction. Each photonic
lattice cell has been divided into 40 x 40 computational mesh cells, but due to duality of the
discretization mesh (see [10]), effectively we determined each field on only 20 x 20 points
inside a photonic lattice cell. Periodic boundary conditions were used in all three directions.
Each period of oscillation was divided into 90 time steps for the numerical integration. A
typical 50-period run (about 4500 time steps) required 50 minutes of run time.

The vector electromagnetic field in the 2D photonic lattice can be decoupled into two
independent modes, transverse electric (TE) where the E-field is perpendicular to the plane
of periodicity. The nonzero field components are (E,, H,, H,). The transverse magnetic
(TM) case has the H-field perpendicular to the plane and the nonzero field components are:
(Ez, Ey, H,). In our calculations we do not prescribe the mode, but choose the mode based
on the orientation of the dipole. For the TE case we introduce a line of dipoles at the center

of the defect. The dipole is oriented perpendicular to the photonic crystal plane.



TE defect modes have been thoroughly investigated in two-dimensional photonic lattices
(square and triangular) (e.g. Ref. [7], [12], and [13]). The calculation of the TE modes in
a square lattice served as a verification of our results. We found very good agreement with
numerical results obtained from a discretized scalar wave equation method. Both compared
very well with experimental results of McCall at al. [14], who fabricated a 2D square photonic
lattice. The dielectric rods were circular cylinders with the radius R = 0.48cm and dielectric
constant 9.0. The lattice constant was a = 1.27cm. The rods were immersed into air
(e = 1.0) for a large dielectric contrast.

The electromagnetic energy radiated by the line of oscillating dipoles as a function of the
oscillation frequency is shown in Fig. 1. The lattice defect is the removal of a dielectric rod
from the center of the lattice. A resonance frequency is clearly identified after 20 periods
and continues to sharpen as energy continues to build up in the defect mode. A plot of the
electric field profile along the z-axis in Fig. 2 shows the field is concentrated close to the
defect. The resonant frequency results agree with the aforementioned results of McCall and
Sakoda. The variation between our and experimental result is less than 0.6%. The field is
confined to a region around the defect extending out to about three lattice constants. Similar
comparison has been made for the TE modes on a triangular lattice (dielectric rods € = 9.0
immersed in air, R = 0.48cm, a = 1.27cm) where results were as follows: Sakoda’s plane-
wave method resulted in a resonance at 11.05GHz [7], experiment by Smith et al. yielded
a resonance at 11.23GHz [15], while our calculation showed a resonance at 11.29GHz. The

deviation of our result from the experiment is about 0.5%.

III. T™M MODES

Since the square lattice does not have a band gap for TM modes, we model a triangular
lattice containing air-holes in a dielectric matrix. A defect in the form of an air hole with a
modified radius was introduced in the center of our lattice. The lattice geometry is depicted

in Fig. 3. € is the dielectric constant of the air-rods, whose value is 1.0. €, is the dielectric



constant of the background matrix and its value is 13.0. The results are scalable to any
lattice parameter, so we quote parameters scaled by the lattice constant. We chose to make
the defect hole smaller than the holes in the rest of the lattice. The orientation of the
oscillating dipole can be chosen to be in z- and/or y-direction. Depending on the dipole
excitation and the size of the defect rod, different modes will appear.

The band structure of TM modes is shown in Fig. 4. The calculation is based on the
plane-wave expansion method with 919 basis vectors. The relative error is determined by
comparing the results for different numbers of plane waves with the asymptotic value. The
error depends on the band number and increases from less than 1% for the first few bands
up to 6% for the eighth band. The first gap exists between the first and second bands, i.e.
between 0.375 and 0.52 in normalized frequency units. The second gap observed for this set
of parameters was between the seventh and eight bands. In the next few paragraphs we will
describe the modes. The horizontal dashed lines delineate the band gap edges.

To illustrate that the TM modes have well defined resonance frequencies we place a line
of dipoles at the center of the defect rod. The defect radius to unit cell ratio is r/a = 0.35.
The dipoles are driven at different frequencies and the radiated energy is computed. Figure
5 shows the electromagnetic energy radiated as a function of the oscillation frequency. There
is a resonance peak at a/\ = 0.461 (a/\ = wa/2xc); this is the eigen-frequency of the defect
mode. The peak in the radiated energy spectrum is well established after 25 oscillation
periods and it continues to grow and narrow with elapsed time. After 100 oscillation periods
the full width at half maximum of the resonance is about 0.005, which corresponds to a
Q-factor of around 100. The resonance continues to grow and narrow and we observed no
saturation of the resonance width. We can conclude that the Q-factor is larger than observed
after 100 oscillation periods.

The crystal has (s, symmetry and therefore six irreducible representations: Ay, Ay, By,
By, E; and E;. By changing the radius of the defect rod and the dipole orientation different
defect modes with different symmetries could appear. For the defects we considered we

found that two defect modes were excited. The magnetic field is plotted in Fig. 6 for a



defect air-rod radius of 7/a = 0.35. This defect mode corresponds to the E; symmetry.
The H-field is concentrated in the regions with larger dielectric constant as observed for the
E-field in similar cases, eg. see [18]. The defect mode was excited by dipoles oscillating
along y-direction defined by Fig. 3. By mode has been found for smaller defect radii, Fig.
7.

Figure 8 demonstrates the TM resonances for seven different defect-radius ratios, r/a;
values of the defect radius were between 0.26 and 0.43 for this figure; the result is the radiated
energy after 100 periods of oscillation. For ratios whose eigen-frequencies approached the
band gap edge, radiated energy was found to rapidly decrease. The maximum energy is
radiated for the frequencies near the center of the band gap, where the mode should be
highly localized [18].

The resonance frequency data for defect modes is compiled in Fig. 9. Each data point
is extracted from a resonance curve for one particular defect-rod radius. The local mode
is confined to the PBG frequency band. The horizontal lines in the figure represent the
boundaries of the band gap. As the ratio r/a increases, the frequencies of the photonic
crystal modes tend to rise monotonically and linearly due to the larger air fraction and
resulting lower average index. As shown in [16] and [17], the eigen-frequency is proportional
to 1/, /€defect- With decreasing defect radius, the effective dielectric constant at the defect
increases proportionally to 2. Hence, in our case with constant dielectric constant and
variable defect radius, the eigen-frequency versus defect radius relation becomes: wy ~
Tdefect-

By rotating the orientation of the dipole by 90°, the second E; defect-mode, rotated
by 90° is found. It is degenerate with the first mode. By combining both orientations, we
obtained again the same mode rotated by 45°. We could not excite any totally symmetric
mode most likely because of the incompatible symmetries (the dipole source produces an
anti-symmetric electric field). All the fields are strongly localized around the defect. The
vector electric field is plotted by arrows in Fig. 10. The length of the vector is proportional

to the field strength. This corresponds to E; mode behavior of the magnetic field in Fig. 6.



Figure 11 shows the F; mode in a second band. This is the only mode found in the second
gap region. As observed previously by Sakoda and Shiroma, [16], the spatial variation of
the electric fields is faster for the modes in the second gap, than for those in the first gap.

In order to compare the localization properties of E; mode for different frequencies (i.e.
ratios 7/a) the local energy at the defect is examined. This is determined by the fraction of
the radiated energy concentrated at the defect unit cell. Our results are presented in Fig.
12, where the defect cell energy is expressed as a percentage of the total radiated energy.
Each frequency corresponds to a certain defect-rod radius. The precise correlation between
the frequency and defect-rod radius can be extracted from Fig. 9. The general position of
the points shows the increase of the energy at the defect cell with the reduction of the defect
radius, which confirms, once again, that electric field tends to localize in the areas with large
dielectric constant.

As found in [7], the eigen-frequencies of the defect modes depend on the number of
photonic crystal layers. We also calculated the resonance frequencies for different supercells
and the results are given in Fig. 13. After only a few (2 - 3) photonic crystal layers the

eigen-frequency reaches its asymptotic value. The mode is localized very close to the defect.

IV. CONCLUSION

In this paper the results of parallel numerical simulations of dipole radiation, based on
the Yee’s mesh finite-difference time-domain method are presented. To overcome the large
computational demands of Yee’s algorithm, we developed a parallel program that improved
the speed of the computations with parallel efficiency of 0.7. No symmetry was assumed
for the modes to reduce the lattice size. Localized TM defect modes were examined in a
two-dimensional photonic crystal triangular lattice composed of air cylinders drilled into a
dielectric host. The defect was varied by changing the radius of the central cylinder. To
validate our new, parallel computer code, we compared our results with previously reported

results of Sakoda and experiments of McCall et al. on TE modes in a square lattice with



a missing defect cylinder. We established a very good correspondence between the results
obtained by different methods.

In the TM defect-mode computations we used a triangular lattice and dielectric materials
that yielded a fairly large band gap for TM modes, when the dielectric constant of the
medium is 13 (GaAs). The ratio of rod radius to the lattice unit cell constant, R/a is 0.48
and we considered smaller defect-rod radii in our computations. The F; and Bs; modes
were found in the first PBG. In the second PBG, we found the F; mode only. We showed
the spatial distribution of the magnetic- and electric-fields and the movement of the mode
resonance through the photonic band gap as the defect radius is changed. In addition, we
determined the dependence of the localization (the field energy confined at the defect cell)
on frequency (defect-rod radius). We also studied the dependence of the eigen-frequencies
on the number of photonic lattice cells.

TM defect-modes have not been previously reported for the pure two-dimensional lattice,
due to the poor convergence of the previously used plane-wave expansion methods and
numerical instability of the discretization of the scalar wave equation. Figs. 12 and 13
show a surprisingly strong localization of the E; defect mode around the defect cylinder.
From this result we infer that only a few lattice cells around a defect are required for good

confinement and high Q-factors.
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FIG. 1. The electromagnetic energy radiated versus scaled frequency for a square lattice with a
defect. The radiation is emitted by a vertical, oscillating dipole moment located at the center of the
grid. A rod was removed from the center of the lattice; the lattice parameters are: R/a = 0.378,
€rod = 9, and €pqtriz = 1. The labeled curves represent the energy after 10, 20, 30, 40 and 50

periods of oscillation.
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FIG. 2. The electric field as a function of the distance from the dipole after 100 periods of
oscillations for wa/2mc = 0.467 for the square photonic lattice with a defect. See the caption in

figure 1 for details.
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FIG. 3. The top view of the two-dimensional array of circular rods used for the calculation. €;

and ez denote the dielectric constants of the rods or of the embedding matrix material; R and r

are the radii of the lattice rods and the defect rod, respectively. a denotes the lattice constant.

Normalized frequency (a/A)

FIG. 4. The photonic band structure of the regular triangular lattice for TM polar-
ization, where the ordinate represents the normalized frequency. This is calculated by a
plane-wave expansion method using 919 basis functions. The following parameters were assumed:
R/a = 0.48,¢; = 1,e2 = 13. A large band gap exists between 0.375 and 0.52 in the normalized
units. The I' — X direction is along the second-nearest neighbor lines through the crystal, eg. the

y—direction in Fig. 3, and the I' — X direction is along the nearest neighbor lines through the

crystal, eg. the rz—direction.
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FIG. 5. The frequency dependence of the accumulated electromagnetic energy for an E; mode

radiated by an oscillating dipole at the center of the defect after 25, 50, 75 and 100 periods of

oscillation. The defect rod-radius is 7/a = 0.35.




FIG. 6. The spatial distribution of the magnetic field after 100 oscillation periods at the scaled
angular frequency wa/2mc = 0.411. The mode’s symmetry corresponds to the E; mode. The ratio
of the defect radius to the lattice unit cell is r/a = 0.28. Dark shades correspond to negative

amplitude values and light shades correspond to positive amplitude values.

FIG. 7. The spatial distribution of the magnetic field after 100 oscillation periods at the scaled
angular frequency wa/2mc = 0.48. The mode’s symmetry corresponds to the By mode. The ratio
of the defect radius to the lattice unit cell is r/a = 0.00. Dark shades correspond to negative

amplitude values and light shades correspond to positive amplitude values.
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FIG. 8. The radiated electromagnetic energy for different defect-radius ratios r/a as a function

of the scaled frequency.
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FIG. 9. The eigen-frequency of the localized defect modes as a function of the radius of the
defect rod. The ordinate is the normalized frequency and horizontal lines represent the boundaries

of the photonic band gap calculated from Fig. 4.
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FIG. 10. The vector representation of the electric field for the £ mode after 100 periods of

oscillation at wa/2 mc = 0.461. The ratio of the defect radius to the lattice unit cell is 0.35.



FIG. 11. The spatial distribution of the magnetic field after 100 oscillation periods at the scaled
angular frequency wa/2mc = 1.11 in the second band gap. The mode’s symmetry corresponds to
the E; mode. The ratio of the defect radius to the lattice unit cell is r/a = 0.34. We observe
higher spatial frequency variations than for the mode in the first gap. Dark shades correspond to

negative amplitude values and light shades correspond to positive amplitude values.
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FIG. 12. The ratio of the field energy at a defect cell to the total energy as a function of

resonant frequency, which is related to the defect radius.
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FIG. 13. The dependence of eigen-frequencies on the number of photonic lattice unit cells in x

(y) direction, L.
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