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0.2 Fields after a single plane

Carron gives the fields of a charge exiting perpendicularly from an ideal conduct-
ing plane. These fields are identical to those from the instantaneous creation of
a pair of equal and opposite charges that then move at the same velocity, but
in opposite directions. The anti-symmetry of the resulting fields assure that in
the plane of symmetry there are no radial fields, and thus that the fields satisfy
the boundry conditions of a perfect conducting sheet in that plane.

These fields, as given by Carron in cylindrical coordinates z, r, but written
in MKS units and with the substitution of Ry — = 4* S; _ (the R’s are the
distances to the charges in their centers of mass system and thus gave more
physical meaning than the S’s) are given below, using the definitions:
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In each equation, the first term is from the Coulomb fields of the moving
charge, and the second term is the radiation emanating from the point where
the charge were created (or exited the plane. Within the Coulomb term, the
first subterm is from the charge its self, and the second from its image on the
other side of the plane.

These are also the fields that are present with two planes, if the time ¢ < g/c,
where ¢ is the distance between the planes; i.e. if it is early enough that the
radiation has not yet reached the second plane:

The following first figure shows the radiation front, and electric field lines
and from the individual charges: the one in the gap, and the image charge left

+

+




1.5

1.0

0.5

0.0

of the plane. The total electric field is the sum of these two contributions, and
is shown in the second figure. In this example 3, = 0.75, and the width of the

radiation front has been artificially broadened to show the fields within it.
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0.3 Fields with two planes

When a second plane is introduced after a gap g, there are several complications:

e There is a second radiation term from the disapearance of the charge as
it enters the second plane at the time ¢ = g/(3c). Tt has the opposite sign
to that from the creation, but is otherwise identical.

e There is another u() in the Coulomb terms caused by the absence of the
source charge after it leaves at time ¢ = g/(8¢c). Like the first u(), it moves
out from the point of disapearance at a velocity c.

e To simultaneously satisfy the boundry conditions at the two planes, we
must introduce an infinite series of images charges. These charges are
created at an infinite number of points spaced by 2g, travel in opposite
directions, and simultaneoudly anihilate at an infinite number of points
spaced by 2g, but interleaved between the points of creation. The resulting
series of charges have exact antisymmetry about the creation and anihila-
tion points, and thus satisfy the boundry conditions for perfect conducting
planes at all such planes.

, generated by the original fields being reflected back and forth between
the planes.
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It will be convenient to give the fields in terms of dimensionless terms €,

767‘78:
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And redefine the radii as dimensionless numbers:
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The dimensionless terms €,, €,, B in the expressions for fields between the

planes are:
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rel trans wake

integrated trans wake

0.4 Wake Fields

The wake fields are the average of these fields, for a point at radius r and fixed
z distance s behind the moving charge.

The next figure shows the relative values of the transverse forces as a function
of time, as a particle enters and leaves the gap. The particle chosen is in the
center of the bunch in the longitudinal direction and has a radial displacement
equal to a typical beam sigma/g of 0.2. The red spikes are the contributions
from the radiation terms. The second figure shows the integral of these fields,
whose value, when divided by the gap, gives the transverse wake seen by this
particle. The same quantities for the vacuum case, where there are no foils or
walls, is also given.

It is seen that there is a delay before any fields arrive at the test charge.
The particle then sees the radiation field, followed by coulomb fields similar to
those in vacuum. They are relatively small because the electric and magnetic
fields almost cancel. Near the end the particle encounters the reflected radiation
followed by the reflected Coulomb fields. These are larger because the magnetic
and electric effects now add, and they are of the opposite sign to the normal
fields. It is the presence of these reflected fields, combined with the initial
absence of any fileds, that reduces the final wake.
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Again we define these wake fields in terms of dimensionless terms:
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And the dimensionless terms in the above are obtained by integration of
the forces on a test charge ar a radius R, and position a distance s behind the
source charge:

Wi(R,, S) = /Olez (R, Z— S) dZ (9)

Wi (R, S) — /1{6 (Ry, Z—S) — By(Ro, Z—S)3}dZ (10

The integrations include integration over the ¢ functions, which depend on
the relative absolute velocity beteen the integration variable dz and the advanc-
ing wave front. Numerically we can avoid this complication by repacing the §
functions by u functions over a sufficiently small interval ¢:

o(z) — %u(x—e) u(—z +¢€)

The wake fields are obtained by forming a grid of points in r, z that moves
with the charged particle. At each time step, the force on a test charge at that
grid point is summed, and an average force obtained.

0.5 Gaussian Distributions

These functions are for point charges and have infinities at R = 0 and S5 = 0.
Indeed the self retarding wake on the charge is itself infinite and the charge
could not leave the ideal, infinitely conducting, uniform, conductor. These are
not physical fields. Or course a single point charge can pass through a metal
plane. The finite conductivity and non-uniformity of the conductor must be
taken into account in this case.

However, for Gaussian distributions of charge in r and z the fields are
nowhere infinite and can be taken as physical. The modifications due to fi-
nite conductivity and non-unifiormity of the conductors are now small and can
be neglected.
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The following wakes were calculated with 3 = 0.87, 0,,/g = 0.2, and ¢,/g =
0.2:
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The following plots are for the same parameters as above, but calculted for
the vacuum case; i.e. no walls of any kind. It will be noted that the transverse
wakes in vacuum are about twice those with the foils.
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