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ABSTRACT

We calculate strong interaction O(eag) corrections to rare K- and B-decays do-
minated by Z°-penguins and box-diagrams with virtual top quark exchanges for an
arbitrary top quark mass. We find that the uncertainty in the branching ratios, due
to the dependence of m; on the choice of the renormalization scale p is reduced from
0(25%) to O(3%) by including the O(as) corrections. For the choice y = my; with
100GeV < my < 200GeV the corrections to Ky — w%v¥ and B — Xv7 are less
than 4% and at most 13% for B — II. For the choice u = Myy they can be as large
as 20% for both types of decays. We also point out that the published branching

ratios for B — Il miss an overall factor of 2.
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1. Introduction

In a recent paper {1] we have begun a systematic study of QCD corrections to
rare one-loop induced K-meson and B-meson decays which are dominated by Z°-
penguin diagrams and box-diagrams. These decays being sensitive probes of the
top quark couplings V4 and V;5 deserve particular attention, especially because the
relevant branching ratios can be reliably calculated in the standard model. As we
have stressed in [1] the pure electroweak contributions to these decays contain an
unavoidable uncertainty due to the dependence of m; on the choice of the renor-
malization scale p. Since the decays considered here are sensitive functions of my,
this uncertainty is substantial and implies theoretical errors for branching ratios of
O(25%). In order to reduce this uncertainty it is mandatory to calculate O{a;) cor-
rections to diagrams involving internal top quark exchanges. Since the electroweak
contributions appear at the one-loop level as shown in fig. 1, the inclusion of O(a;)
QCD eflects requires two loop calculations. These are rather tedious but in view of
the possibility of extracting the couplings Vi; and V4 from the decays in question

such an effort is justified in our opinion.

As a first step in this project we have calculated in [1] the O{«;) corrections to
the one-loop induced 3dZ-vertex for an arbitrary top quark mass. This required the
evaluation of 24 two-loop diagrams and of necessary QCD and electroweak counter-
diagrams. We have found that the uncertainty in the strength of the effective vertex
5dZ due to the choice of scale y has been reduced from Q(10%) to O(1%) by in-
cluding the O{as) corrections.

In order to complete the analysis of O(cas) corrections to relevant branching
ratios also the QCD corrections to certain box diagrams have to be calculated. This
will also remove the dependence on the W-boson gauge present in the effective vertex
§dZ. The purpose of the present paper is the calculation of the QCD corrections to
box diagrams (b) and {c) of fig. 1 which contribute to decays with »¥ and pp in
the final state respectively. Combining this calculation with the one of [1] we are
able to construct QCD-corrected effective Hamiltonians for two classes of rare K-

and B-decays which are dominated by internal top quark exchanges. In the case of



K-decays these two Hamiltonians are given explicitly as follows:
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Where z; = m?/ M%’ »  (3d)y—a4 = &yu(1 —75)d , a is the electromagnetic coup-

ling constant and
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Y(z) = Yy(z) + ﬁ}’l(w) (1.4)

The scale of a; is O(My). Next

Xy(z) = g [-f fz + (i’x_;; In :c] (1.5)
and
Yo(z) = % [11 :z + a Exm)2 lnx] (1.6)

represent pure electroweak one-loop contributions and Xj(z) and Yj(z) resulting
from O(g%as) two-loop diagrams are the functions calculated by us. They include
the results of our previous paper [1]. We find
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and
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Here p is the scale at which the running top quark mass my(x) is defined. The

(1.9)

p-dependences in the last terms in (1.7) and (1.8) cancel to the order considered the
p-dependences in the leading terms Xo(z(p)) and Yp(z(u)) respectively. It should
be emphasized that the functions Xy, ¥p, X3 and ¥} are gauge independent.

The following sections give some details of the calculations which result in the
formulae (1.7) and (1.8). In Section 2 we use the result of our previous paper
[1] to construct the parts of the effective Hamiltonians coming from Z°-penguin
diagrams. In Section 3 we calculate O(as) corrections to the box diagrams of fig. 1
and we construct the corresponding contributions to the effective Hamiltonians in
question. In Section 4 we combine the results of the previous sections to obtain the
complete Hamiltonians of egs. (1.1) and (1.2). Subsequently we elaborate on the
size of the O(a;) corrections with respect to the values of m; and u. In particular
we discuss the branching ratios for the decays K§ — #°5,B — Xov# and B — Il
which are dominated by internal top quark exchanges. We end our paper with a
brief summary and with an outlook for corresponding calculations of the decays
K% — atvp and K, — pji which receive additional contributions from internal
charm quark exchanges. The latter require a somewhat different treatment due to

me < My and will be analyzed in a separate publication.

2, Effective Hamiltonians from Z%-Penguins

In our previous paper [1] we have calculated the O(a;) corrections to the one-
loop induced 3dZ-vertex for an arbitrary top quark mass. Including the Z°-pro-
pagator and the tree-level coupling ffZ° with f denoting u or v we obtain after
multiplication by 7 the parts of the effective Hamiltonians resulting from Z°-penguin
diagrams:
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Here (73) is the third component of the weak isospin and Q 7 is the electric charge

AzH) =

of f. Only the first term in the parenthesis is of interest in this paper. The second



term contributes only to decays in which also photonic penguins are present. This
is for instance the case of K — 7%te™. The analysis of this process at this level
would require also the calculation of O(a;) corrections to y-penguins which is clearly

beyond the scope of the present paper.

The function C(z) has been already analysed in detail in {1]. It is given as

follows
C(e) = Co(a) + $2C1(2) (2.2)
where [2]
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As in (1.7) and (1.8) g is the scale at which the running top quark mass is
defined and the last term in (2.4) cancels to the order considered the u-dependence
present in the leading term Cp(x(x)). The function C(z) given here corresponds to 't
Hooft-Feynman gauge for the W-propagator. In order to obtain gauge independent
Hamiltonians also contributions from box diagrams have to be considered. This is

what we will do next.



3. Effective Hamiltonians from Box-Diagrams

The effective Hamiltonians resulting from diagrams of figs. 1b, 1c and 2 are given

as follows
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where the second argument in the 2; dependent functions stands for (73) Iz

In the 't Hooft-Feynman gauge for W one has

B(z,%1/2) = Bo(z) + 7= By(=, £1/2) (3:3)
with the one-loop function given by [2]
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The equality B(z,1/2) = B(z,—1/2) at the one-loop level is a particular property
of the 't Hooft-Feynman gauge. As we will see below this equality is violated by

O(as) corrections.

In order to find the O(as) corrections in (3.3) we have to evaluate the diagrams
of fig. 2, where generally charged virtual boson (W=) exchanges and fictitious Higgs
particle (H¥) exchanges have to be taken into account. In the case of 5d — LR
however, the internal leptons are massless and in the approximation of neglecting
the external masses only diagrams with W contribute. It turns out that in the
case of internal top quark exchanges considered in the present paper it is an excel-
lent approximation to set also me = my, = mr = 0 in the process of evaluation of
diagrams contributing to 3d — pv. Consequently also in this case only diagrams
with internal W+ exchanges contribute which substantially simplifies the calcula-
tion. In the case of internal charm quark exchanges considered in our next paper
mr cannot be set to zero and the full set of diagrams with H % and W= has to be
calculated. Consequently the function B(x,1/2) given in the present paper is not

valid for z = m2/M %, and internal 7-lepton exchange.



In [1] and in this paper we have used the program TRACER [3] written in
MATHEMATICA [4] for the manipulation of the Dirac algebra. The many in-
tegrals present in our calculations have been evaluated in two ways: by hand and
with the help of MATHEMATICA (G.B.) and independently (A.J.B.) by using
the tables of Devoto and Duke [5] where MACSY M A [6] has been employed.

The diagrams (a) und (b) in fig. 2 are ultraviolet divergent but are infrared-finite.
The diagram (c) is infrared-divergent. As in [1] we make use of the most convenient
possibility, namely we choose external fermions as massless and on-shell. We then
regularize all divergences dimensionally. As discussed in [1] such a treatment makes
the factorization of short and long distance contributions essentially trivial. The
O(as) corrections to the matrix element of (3d)y_4 vanish and the diagrams of

fig. 1 and 2 give directly the Wilson coefficient functions.

The QCD counterterms necessary to make the diagrams of fig. 2 finite have been
discussed at length in our previous paper and will not be given here. Electroweak
counterterms are not present here because the one-loop diagrams are finite. The
new feature of the diagrams of fig. 2 is the appearance of the Dirac structures like
7‘“*.;/-" 7”(1—75)®7ﬂ7p7y(1 —75) at the intermediate stages of the calculation, In D
4 dimensions such tensors can be rewritten as linear combinations of the operator
(V — A) ® (V — A) and evanescent operators which vanish in D = 4. The latter
could in principle give contributions when multiplied by 1 /€ singularities. Yet this
does not happen in the present calculation. In fact by adding the counterdiagrams
it turns out that the coefficients multiplying the Dirac structures above can be made
finite. The reduction to (V — A) @ (V — A) operators can then be made simply in
D = 4 dimensions.

There is a simple reason why the evanescent operators do not contribute here.
The point is that the treatment of these operators at O(es) depends generally on
the renormalization scheme and this dependence can only be cancelled by two-loop
anomalous dimensions. However, the current (3d)y_ 4 has no anomalous dimensions

and consequently also the contributions of evanescent operators must be absent.

Now the sum of the diagram 2a and of its counterdiagram gives a finite result.
On the other hand the sum of the diagram 2b and of its counterdiagram is still

divergent with the same property for the symmetric diagram. The left-over 1/¢



divergence in 2b can be traced back to our treatment of external lines (massless,
on-shell} for which the O(a;) term in the field renormalization constant is absent in
dimensional regularization as discussed in [1]. It is then not surprising that the left-
over 1/e divergences in 2b and in its symmetric counterpart are precisely cancelled
by the infrared 1/e singularity present in the diagram 2c. It turns out that the sum
of diagrams of fig. 2 contains z-independent terms. These terms will be dropped in
what follows because they are cancelled by the GIM mechanism anyway. Summing

all contributions we obtain the result for the O(as) corrections in (3.3)

13z + 322 2 — 1722 z+322 2z
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As in the case of C(z), the last terms in (3.5) and (3.6) cancel to the order considered
the p-dependence present in the leading term By(xz(u)).

We note that the difference between B)(z,1/2) and By(z,—1/ 2) is very simple:
Bi(e,~1/2) — By(2,1/2) = 16 By() (37)

Next we would like to consider the limiting cases £ < 1 and ¢ > 1. In the case
& < 1, which will be relevant for the charm contribution, one can perform a leading-
log renormalization group analysis [7,8,9] and obtain a QCD correction factor B

for the leading term in the By-function:
] .
By — Emlnw ‘1B (3.8)

np contains the sum of all leading logarithmic corrections. If we retain only the
O{ars)-term we can write (K = as(Miyy)/as(m))

6 1/23
=" _(1-kV L+ 4mz 3.9
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Then (3.8) coincides, as it should, with the z < 1 limit (x = m)
Qs 9y, L Qs 1.2
By + 4wBl(m,:i:1/2) — 4:):ln:J: + 4ﬂ_a:1n z (3.10)

which provides a certain check of our two-loop calculations.

In the limit & > 1 the functions B tend to a constant, in the contrary to C
which grows essentially proportional to z. Therefore the leading terms as z — oc
are the same for the functions X and Y and equal to the leading terms of C which

may be found in [1].

4. Total Hamiltonians and Applications

Combining the results of Sections 2 and 3 we find the effective Hamiltonians
(1.1) and (1.2) with '

X(zt) = Clay) — 4B(x4,1/2) (4.1)

¥ (20) = Cler) - Blet,~1/2) (12)
from which formulae (1.5) — (1.8) follow.

Let us first investigate the size of the O(as) corrections in (1.3) and (1.4). To
this end we take Agcp = 200MeV. Since the scale of a, is O(Myy), the corrections
are rather insensitive to the value of Agcp and very similar results are obtained for
100MeV < Agep < 300MeV. For the running quark mass we use the leading log

expression
2 2 as(p) 2
() =) [ 23] «3)
In fig. 3 we plot the ratio (a/47)X)/ X} for two choices of i, u = my and p= My,
as a function of m;. As anticipated in [1] and in Section 3 for g = my the correction is
small in the full range of my considered and very weakly dependent on mg. It varies
from -1.9% for my = 90GeV to -1.6% for m; = 300GeV. Thus for high values of

my the lowest order function Xp(z) represents well the QCD-corrected result when
interpreted as Xg(z{x = my)).

On the other hand if the choice 4 = Myy is made, the correction is substantial
and varies from -3% for m; = 90GeV to —-17% for my = 300GeV. For instance for



my = 150GeV it amounts to —-8%. This sizeable negative correction for m; > My
compensates the “artificial” growth of Xg(x) when the scale 4 is unnaturally lowered
to p = My < my. |

Consequently when QCD corrections have been taken into account the final
result for X(z) is essentially the same irrespective of whether g =mgorpu= My
has been chosen. This situation should be contrasted with the zero order result
X(x) = Xo(z) which sensitively depends on the choice of p. We will demonstrate
this explicitly on the examples of branching ratios.

Similar features are observed in the case of the function Y(z) as illustrated in
fig. 4 and in the analysis below, although all effects are larger than in the case of
X(z). This is partly related to the stronger dependence of Y (z) on z.

The effects just discussed are more pronounced when specific branching ratios
are considered. As the first example we calculate the branching ratio for the CP-

violating decay K — x°¥ [9,10,11]. Summing over three neutrino flavours one

has
B(Kj, — 7°vi) = 1.94 - 10102 44 [Xg(xt) + giXo(mt)Xl(mt)] (4.4)
T .

where we have dropped consistently O(ca?) terms.

A and 7 are the Wolfenstein parameters. Taking typical values A = 0.85 and
n = 0.40 and setting my(my) = 150GeV we plot in fig. 5 B(Kj — 7°) with and
without QCD corrections as a function of . We observe that the inclusion of O(ay)
corrections reduces the ambiguity due to the choice of ¢ from O(20%) to roughly
2-3% thus considerably increasing the predictive power of the theory. Varying 4 in
the range from 90GeV to 290GeV one finds that for the above chojce of my, A and
7 the uncertainty in B(Kj — n%p):

2.65- 107! < B(K; — #%5) < 3.25. 10~ 11 (4.5)
present in the leading order is reduced to
2.80-10"1 < B(K; — #%p) < 2.88- 10~ 1 (4.6)

when the QCD corrections are taken into account.

At present the value of A extracted from & — ¢ transitions is given roughly by

A 2 0.8540.12 and the error on 5 obtained from the parameter ex is considerably

10



larger. Consequently the usefulness of the results obtained in the present paper is
damped by the uncertainties in 77, A and in the value of m¢(m;). Once the top quark
has been discovered, m;(m;) measured and the error on A substantially reduced, a
measurement of B(Kj, — x%7) if at all possible, should give in conjunction with
our calculations a reliable estimate of the parameter 5. We are aware of the fact

that it may take a decade or more to achieve this goal.

A similar discussion can be made for the decay B — X Zwv¥ which is also
governed by the function X(z;). This decay offers probably the cleanest way to

measure the coupling Vis. Its branching ratio is given as [10]

B(B — XXvi) _ a? | Vis |2 Xg(:ct) + %}Xo(wt)Xl(a:t) @n
B(B — Xce7) 4n2sint Oy | Vip |2 f(me/mp)no '

where f(m¢/my) >~ 0.44 is a phase-space factor in B — X,e¥, and no =~ 0.87 is the
corresponding QCD correction for Agop = 200MeV [12].

Taking | Vis |=| Vop |, @ = 1/128, sin? Oy = 0.23, B(B — Xceve) = 11% and
m¢{my) = 150GeV and varying g in the range 90GeV < ¢ < 290GeV we find that
the uncertainty

4.15-107° < B(B — XsXvi) < 5.08-1075 (4.8)
present in the leading order is reduced to
4.37-107% < B(B — XsZvp) < 4.49.10~% (4.9)

after the inclusion of QCD corrections.

As an example of a decay governed by the function Y () we consider the decay
B2 — Ul for which we find

= G2 o 2 2 9 m12 * 2
B(B )= bl 2 S Y, hind IS
(Bs — ) _T(Bs) - (471_ sin2 @W) Fgmimp,|1 4m23 [ VisVa | (4.10)

[0 + 2o Yi(eo)

where Bs denotes the flavor eigenstate (5b). The B-meson decay constant Fpg is
defined through

< 0| (3b)y—ayu | Bs(p) >=iFppy (4.11)

11



which corresponds to Fr = 132MeV. 7(Bs) is the Bs-meson lifetime. Formula
(4.10) in addition to the inclusion of O(as) terms corrects for an overall factor of 2
missing in the existing literature [10,13,14]. A similar expression for the decay of
the Kp-analogue of the B°-meson in the limit x; < 1 has however been correctly

given in [15].

Considering the decay Bs — uji we have numerically

2
N0y, -9“'(3.-3)[ Fp ]2 | Vis | [2 as ]
B(Bs = i) = 24- 107700 ¢ (5000ev] |o041| [10(#0)+ 3 ¥0(e)Ya(e0)
(4.12)

Taking the central values for 7(Bs), Fg and | Vi, | we plot B(Bs — uf) in fig. 6 for
the cases considered in fig. 5. All the features seen in fig. 5 are also clearly visible
here although the effects are stronger. The ambiguity of O(30%) present in the

leading order is decrased to roughly 2% after the inclusion of O(a;) corrections.

In analogy to (4.5) and (4.6) we have, without and including the QCD correction
1.44-107% < B(B — pj) < 1.91 1072 (4.13)

and
1.76 - 107° < B(B — pji) < 1.79-10~9 (4.14)

respectively.

Finally in Table 1 we give the values for the ratios

X(zt) Y (z1)

= = 4.15

= Xow) ™ Yol 19
as functions of m; for the choices ¢ = m; and g = M. Again Agcp = 200MeV
has been used but almost identical results are obtained in the full range 100MeV <
Agep < 300MeV. This table is a different representation of the features found in

figs. 3 and 4 and should be useful in phenomenological applications.

12



nx = X/Xo ny =Y/Y¥p
m/GeV | p=my p = My p=my p= My
90 0.981 0.970 1.072 1.057
110 0.983 0.952 1.054 1.014
130 0.984 0.937 1.042 0.979
150 0.984 0.922 1.032 0.951
170 0.985 0.908 1.025 0.926
190 0.985 0.895 1.019 0.904
210 0.985 0.882 1.015 0.885
230 0.985 0.869 1.011 0.867
250 0.985 0.856 1.008 0.850
270 0.984 0.844 1.005 0.835
290 0.984 0.832 1.002 0.820
Table 1

5. Summary and Outlook

We have presented the first calculation of the O(a,) corrections to rare K- and
B-decays dominated by top-quark exchanges in Z°-penguin and box diagrams. Qur
calculations are valid to all orders in the internal quark mass ratio z; = th/MI?V
and go beyond the previous studies of QCD corrections to these decays [7,8,9]. An
important ingredient in our work was the calculation of the O(eas) correction to the
effective low energy FCNC vertex 3dZ presented in [1]. The main results of [1] and

of this paper can be summarized as follows:
¢ The QCD-corrected Hamiltonians, given in (1.1) and (1.2).
¢ The QCD-corrected effective vertex 3dZ obtained in the 't Hooft-Feynman
gauge, given in (1.1) of [1].

¢ The O(as) calculations allow to resolve to a large extent the quite sizable
ambiguity in the lowest order expressions due to the dependence of m; on the

(arbitrary) renormalization scale g. The related uncertainty in the branching

13



ratios is reduced from O(25%) to less than 3% when QCD corrections are

taken into account.

e The O(as) corrections to leading order results are made small for large m;
when the renormalization scale is chosen as g = my, i.e. the running top
quark mass is defined as my = my(m¢). For the expected range of values of
the top quark mass 130GeV < my(my) < 190GeV, the QCD factors nx and
7y defined in (4.15) are essentially independent of m; and Agep and given
by

nx ~0.985  1.019 < gy < 1.042 (5.1)

If 4 = Myy is chosen one finds 0.895 < x < 0.937 and 0.904 <y < 0.979
for the same range of top quark masses, as can be seen in Table 1. Similar
features have been found in [16] where next-to-leading order QCD corrections
to B° — B mixing have been calculated. Also in this case the choice p =
my led to a substantial reduction of the next-to-leading corrections and the
corresponding QCD factor 19 was essentially independent of m; for this choice
of p:mo ~0.55.

e The QCD corrected functions X{z) and Y(z) of (1.3) and (1.4) are central in
the penguin-box expansion formulated by us some time ago [9]. The present

work is a non-trivial step towards the generalization of this expansion beyond

the leading order.

We have illustrated various aspects of our calculations by considering the branch-
ing ratios B(Kf — 7%¥), B(B — X;Xvv) and B(B — IlI). We are aware of the
fact that while these decays give us an excellent laboratory for the study of QCD
effects in rare decays, it will take at least a decade before these particular decays
can be experimentally detected and our results tested. In this respect the calcu-
lation of QCD corrections to the decay Kt — wtuvp is of more interest, because
there is a chance that this decay will be observed in the near future. The QCD
corrected top-quark contributions to this decay can already be obtained by using
the Hamiltonian (1.1). It is however known that this decay receives important con-
tributions from internal charm exchanges. In view of m¢; <« My, large logarithms
In My /m. present in these contributions must be summed up by means of renor-

malization group techniques. The leading log analyses of charm contributions are

14



known [7,8,9]. However, in order to be consistent with the O(as)-top quark con-
tributions calculated here, a next-to-leading log calculation in the charm sector has
to be performed. Such a calculation should reduce considerably the uncertainty in
B(Kt — #Tvp) due to the choice of the value of the charm quark mass [17,18] and
due to non-leading mass terms. Similar comments apply to the short distance part

of B(K — pfi). The next-to-leading log analysis of these decays is in progress.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Figure Captions

The leading one-loop diagrams contributing to the transitions 5d — pv and
3d — fip. The dashed lines represent W%, The corresponding fictitious

Higgs exchanges are absent in the case of vanishing lepton masses.

The O(as) gluonic corrections to the box diagrams of fig. 1 (b) and (c).

The relative correction to the leading result X as a function of my(u) for

the two cases y = My (dashed line) and g = m; (solid line).
The same as in fig. 3 for Y.

The p-dependence of the branching ratio B(Kj — #%#) with (solid) and
without (dashed) QCD corrections for my(m;) = 150GeV, A = 0.85 and
7 = 0.40.

The same as in fig. 5 for B(Bs — pi) with 7(B;) = 1.28ps, Fg = 200M eV
and | Vi |= 0.041.
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