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The coherent beam-beam interaction in the absence of Landau damping is studied with a computer
simulation of four space-charge-compensated colliding beams. Results are presented for the modes,
phase space structures, widths, and growth rates of coherent beam-beam resonances. These results are
compared with solutions of the Viasov equation, and with measurements made at the Dispositif de Col-
lisions dans I'Igloo (DCI) storage ring in Orsay, France, which operated with space-charge-compensated

colliding beams.

PACS number(s): 29.27.Bd, 29.20.Dh

INTRODUCTION

The luminosity of storage ring colliders is limited by
the effects of the electromagnetic fields of one beam on
the particles of the other beam. This beam-beam interac-
tion is parametrized by the beam-beam strength parame-
ter,
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where r, is the classical electron radius, N is the number
of particles in the beam, B is the vertical amplitude func-
tion at the interaction point, y is the beam energy in
units of rest energy, and o, and o, are the rms horizon-
tal and vertical beam sizes at the interaction point. The
beam-beam interaction is not linear in displacement, and,
in the usual case of two colliding beams, those nonlineari-
ties introduce single particle nonlinear resonances and a
spread in transverse oscillation tunes. The vertical tune
spread is equal to &, which is sometimes denoted as §,.
The beam-beam luminosity limit could be due to the non-
linear resonances and the tune spread, which are single
particle, incoherent effects, or it could be due to coherent
instabilities [1]. .
Coherent beam-beam instabilities are expected based
on solutions of the Vlasov equation [2-5]. They are
characterized by rapid, turn-by-turn, correlated varia-
tions of the beam distributions. They have been seen in a
two-beam simulation that used particle-in-cell techniques
to calculate electromagnetic fields [6]. In this simulation
there was qualitative agreement with Vlasov equation
solutions for sixth and eight order resonances, but higher
order resonances were not seen, presumably because of
Landau damping from the beam-beam tune spread. The
instabilities that were observed occurred for £20.05 and
could be avoided by the appropriate choice of operating
point. This led to the conclusion that the coherent
beam-beam effect was not likely to be important in
operating or planned colliders. In contrast, turn-by-turn
variations of beam sizes have been observed at LEP using
a detector capable of imaging the beam on successive
turns [7]. More data are needed before drawing any con-
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clusion about the relation between these variations and
the beam-beam limit.

Incoherent beam-beam effects can be eliminated by col-
liding four beams in the field compensating configuration
shown in Fig. 1. Without incoherent effects there is a
possibility of substantially improved performance. How-
ever, there is no Landau damping from the beam-beam
tune spread, and coherent instabilities could be much
more important. The DCI (Dispositif de Collisions dans
I'Igloo) storage ring at the Laboratoire de I’Accélérateur
Linéaire (Orsay, France) had four colliding, space-
charge-compensated beams, and the beam-beam limit was
not significantly different than with two beams [8]. This
is a strong indication of the importance of coherent
beam-beam effects in this configuration, and the DCI per-
formance limit was attributed to them.

This paper reports the results of a computer simulation
of four colliding beams. Coherent beam-beam resonances
are observed, and their mode structures, phase space
structures, widths, and growth rates are measured and
compared with solutions of the Vlasov equation to study
the underlying physics of the coherent beam-beam in-
teraction. Other results are compared with DCI mea-
surements to understand the performance there.

SIMULATION

The simulation is a modification of that of Krishnago-
pal and Siemann [6]. Test particles were followed in
transverse, four-dimensional phase space for a large num-
ber of turns, with each turn consisting of transport be-
tween the interaction points and beam-beam collisions.
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FIG. 1. Four colliding beams in the field compensation
configuration used in DCIL. The four beams are collinear and
arrive at the interaction point at the same time.
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The initial phase space coordinates were chosen from
Gaussian distributions with the nominal sizes.

Different transport models were used based on the is-
sue under study. For resonance studies and for compar-
isons with the Vlasov theory (i) the horizontal and verti-
cal dimensions were independent, (ii) centroid feedback
set the mean coordinates to zero before the beam-beam
interaction, and (iii) there was no radiation damping or
quantum excitation. The DCI simulations were intended
for comparison with experiments, and the transport had
coupling between horizontal and vertical motions, radia-
tion damping, quantum excitation, and no centroid feed-
back. In addition, either one or two interaction regions
was possible, and the two-interaction region model had
phase advance errors between the interaction regions.
These errors were consistent with estimates based on the
DCI magnetic lattice with quadrupole gradient errors [9].

The electromagnetic fields at the collision point were
calculated by Lorentz transforming to the rest frame of a
pair of beams and solving for the electrostatic fields there.
First, a circular mesh was constructed for each pair of
beams. The meshes had 16 azimuthal bins and 100 radial
bins each with a size Ar=(0,+0,,)/20 where o,, and
oy are the nominal horizontal and vertical rms beam
sizes. Bach mesh was centered; for example, the origin of
the mesh for beams 1 and 3 was centered at
X¥=(x;+Xx3)/2 and =(y,+7,)/2, where X, is the hor-
izontal centroid of beam 1, etc.

Particles were placed on this mesh by apportioning
them to adjacent mesh sites with area weighting fractions
[10] and taking their charge into account. The resultant
array was Fourier analyzed in azimuth, and the real and
imaginary parts of the Fourier coefficients were smoothed
to reduce the effects of statistical fluctuations in the num-
ber of test particles at individual mesh sites. The smooth-
ing was performed with the IMSL routine csscv [11],
which is based on a smoothing spline to approximate
noisy data with the smoothing parameter found by cross
validation [12]. The smoothed charge distributions to-
gether with the Green’s function for Poisson’s equation in
polar coordinates gave the electrostatic fields.

VLASOV THEORY FOR COHERENT
INSTABILITIES OF FOUR COLLIDING BEAMS

Introduction

There are several Vlasov equation solutions for the
coherent beam-beam interaction. The initial work was by
Derbenev and was devoted to four beams with transverse
motion in two spatial dimensions [2]. Dikansky and Pes-
trikov considered two beams, two transverse spatial di-
mensions, and synchrotron motion [3]. Chao and Ruth
studied two beams, only one transverse dimension, and
no synchrotron motion [4]. Zenkevich and Yokoya cal-
culated the growth rates for two beams and one-
dimensional oscillations including Landau damping [5].
They found that the growth rates of low order resonances
were diminished significantly by Landau damping.

There are qualitative disagreements between Chao and
Ruth and Dikansky and Pestrikov when that calculation
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is restricted to one dimension. These disagreements arise
from (i) different treatments of the focusing of the equilib-
rium distribution when making action-angle transforma-
tions (Chao and Ruth account for it while Dikansky and
Pestrikov do not), and (ii) an implicit assumption by Di-
kansky and Pestrikov that perturbations cannot be de-
focusing. These disagreements do not affect the four-
beam calculation.

Vlasov equation solution of Derbenev (Ref. 2)

This section is a summary of the Derbenev paper.
Some of the numerical coefficients in equations are
different, and Derbenev numbers the beams differently
than we do in Fig. 1. This leads to some sign differences
in the equations. Neglecting radiation damping and syn-
chrotron oscillations, the linearized Vlasov equations
may be written in the form

a T “%dp, dp, oI, ’

)

where {@,,[,} are action-angle variables, T and Q, are
the revolution period and betatron tune, respectively, and
there is a summation over index a. All four beams are
assumed to have the same equilibrium distribution F, and
f4 is the perturbation of the density distribution of beam
q. The Lagrangian for interaction of a particle with fields
excited by collective oscillations of other beams is fq.
For example, the Lagrangian of interaction of particle in
beam 1 with the fields of beams 2 and 4 can be represent-
ed in the form

Li(r,t)=—4e%, [dT[f,(p},1},1)

—FalplLr, ) In(r, —xi) , (3)

where 8¢ is a periodic delta function with period equal to
the revolution period, p| and r| are transverse deviations
from the equilibrium orbit, and dI'| is a phase space
volume element.

The four-beam system can have four modes,

fji =[f1+f31EL[f2+f4]
and 4)
fj—:=[f1 —f31Elf2—f4] -

Instability develops from differences in the densities of
the two beams moving in the same direction, so only two
of these modes, the f_ modes, can be unstable. The —
subscript is dropped in the equations that follow. The
equations for the individual beams can be added and sub-
tracted, leading to a set of uncoupled equations for f*
and f~. Stationary solutions of the form

FEL et +T)=Af%(1,9,1) 5

are sought. They are unstable if |A| > 1. The phase space
distribution is Fourier transformed in angle,

f(Le)=3 fu(Dexp{im-@} . (6)
m
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TABLE I. Parameters for comparisons with Vlasov equation.

Betatron fune, Q=Q.=Q,

Coupling
Radiation
Feedback
Number of test particles/beam,

Nrp ) 50000

Independent horizontal and vertical motions
No radiation damping or fluctuations
Centroid Feedback, X,=7;=

- =0, before collisions

The charge density is Fourier transformed,
o= [dx [dy e | [dp, [dp,rLg) |, 0

and the equilibrium distribution is assumed to be a

Gaussian. The result is an integral equation for
fk)=a(k)/k, -

m-§
Aexp(2mim-Q)

FER)=F43 =

X [ gu(kK)fE KXk, (8)

that leads to resonances when m-Q is close to an integer.
The kernel int this equation is

K24k

gl k) == 1 ek, (ke Jexp [-— >

kk'

)

Round beams

Our simulations have been done for the case of nomi-
nally round beams, beams with equal sizes initially
(0x0=0,=0g), equal beam-beam strength parameters
(,=§,=§), and equal betatron tunes (Q,=Q,=Q).
This case can be analyzed by replacing the sums over m,
and m, in Eq. (8) by sums over m,+m, and m,—m,.
The term in front of the integral in Eq. (8) depends only
on m,+m,, and Eq. (9) can be summed over m, —m, to
give = :

[[ " Q=0.80075
25 [l €=00173

15 [

0 200 400 600 80 1000
Turn Number
FIG. 2. The rms horizontal size of beam 1 normalized to the
nominal size.

(m,+m,)&
+ — . x y

(k)=F4i . —

f mxgmy 1—Aexp[2mi(m,+m,)Q0]

ngmx+my(k,k’)fi(k’)d2k' ,  (10)
~ with

N , k2+k"

8m, +m, (k,k')= kk' mx+my(k-k Jexp 2

(11)

There is nothing to distinguish the two transverse di-
mensions, and therefore the angularly symmetric har-
monic f, in the Fourier expansion,

16
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FIG. 3 Horizontal beam sizes for turns 250-400 where the
instability appears.
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fK)=3 f,(k)e"® (12) Beam 2 . _..—_Beam?2-Beam4
g

is expected to dominate for round beams. The integral in
Eq. (10) equals zero for this harmonic when m, tm, is
odd, and only even order resonances with resonance con-
dition ’

(m,+m,)Q=2mQ =n (13)

are allowed. Equations (10) and (11) become

m
1—A exp(4wimQ)

fEk)=F16mES

m
0 + Turn
X [ ek, k) fE (K k'dk’  (14) 300
and
’ 2 ”2
Ok k' _—__4_12 i _,& . 15 2
&n oK)= In |5 2 15 =
. <
Equation (14) can be solved for Q =n/2m +AQ when
AQ <<1 by keeping only the +m and —m terms in the
sum. Looking for eigenvalues of the form ‘ Turn|
. 400
A=exp[4mi(—mQ +d)] (16)
gives
14
I Q=0.79925
i € =0.0173
12 |
I Position
[ FIG. 5. Horizontal phase space plots for Q@ =0.80075 and
L : §=0.0173 for beam 2 (f,) on the left and for (f,—f,), the
12 difference between beams 2 and 4, on the right. The plots cover
[ +5 times the nominal rms sizes, and the dashed lines are con-
Beam 2 tours of negative value.
b° 1 1 1
5
12 |
r L\
Beam 3 A 3
1 ¥ ) 1 L % AR < '
- ) o Y
| ERN o
5 ) ....“‘ 7 f S T\-I. -:’\;
12 - = &Tf\’i
1 L . Position
200 250 300 350 FIG. 6. Horizontal phase space contours of (f,—f,) for
Turn Number Q=0.777853 and £=0.0173, a point within the Q=1% reso-

FIG. 4. Horizontal beams sizes on the other side of the  nance. The plots cover +5 times the nominal rms sizes, and the
Q=4 resonance. dashed lines are contours of negative value,
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FIG. 7. Contour plots in physical space for
f2—f4. The figures cover +50,, and the con-
ditions are those of Fig. 4: 0=0.79925 and
£=0.0173.

Horizontal

5=m{AQ*V (AQ)*TBEC,AQ} . (17)

The minus sign inside the square root holds for £, the
plus sign holds for £, and C,, is the eigenvalue of

Cfolk)= [ g%k, k") folkK'dk’ .

Equation (17) contains an essential result. The f*
mode is unstable for tunes above the resonance,
0=AQ =8&C,,, and the growth rate is

(18)

=4rmV/8EC, |AQ| —(AQ) . (19)

The £~ mode is unstable for tunes below the resonance,

—8£C,, <AQ <0, with the growth rate given by Eq. (19).

Solving the eigenvalue equation numerically for

different values of m gives the parametrization
_0.322

C,= P U e -

=5 ~ - (20)

for the largest eigenvalue. We compare simulation re-
sults with the expressions for widths and growth rates us-
ing Eq. (20), although there are reservations in doing so:
(i) Equation (20) is for the largest eigenvalue and other ei-
genvalues are comparable with roughly ten being able to
make contributions to the width and growth rate, and (ii)

we measure the growth rate of 02—a3, which is beyond
the scope of the linearized Vlasov equation. In making
these comparisons we are primarily interested in orders
of magnitude and the dependence on resonance order.

COMPARISONS WITH SIMULATIONS

An extensive study of the tenth order resonance Q =
was performed using the parameters given in Table L.
The nature of the coherent instability is illustrated in
Figs. 2 and 3. The beam sizes are stable and equal to the
nominal sizes for roughly the first 200 turns. They in-
crease rapidly after that, eventually reaching a condition
that repeats every fifth turn. The horizontal size of beam
1 is plotted in Fig. 2. Vertical sizes behave the same
when the tunes are equal. As shown in Fig. 3, beams 1
and 2 behave identically as do beams 3 and 4. This is as
expected since the tune is above the resonance value of
L, and therefore the f * mode should be unstable Fig-
ure 4 shows the sizes on the other side of @ =, where
the f~ mode should be unstable. As expected in this
figure beams 1 and 4 have the same behavior as do beams
2and3. '

This resonance corresponds to m =35, and there should
be fivefold structure in the horizontal and vertical phase

0.004
0.04 e — . N
[ / \\ / \
—o003f N/ mom / \‘/r*-
in - I} \ ] \ < m
I \ I \ <
E | R L_IY / \
\ H = \
2002l ! A 0.001 |
= / V- = A unstable
) [} _ N
® / \ ! ! v stable &=00346
r I 1 ® unstable ,
ootf | } | ostable | £=0.0173 (x2) 24
- - 0.0004 ' ' .
] I 4 10
' 1 ! N N 1 N ! | - . o m .
'0 0015 -0.001 -0.0005 0 0.0005 0.001  0.0015 FIG. 9. Resonance widths for different resonance orders.
AQ=Q-8/10 The first stable and last unstable points on each side of the reso-

FIG. 8. The growth rate of o2— o3 from the simulation com-
pared with Eq. (19) using the eigenvalue from Bq. (20) (solid
line} and using three times that eigenvalue (dashed line).

nance are indicated. The resonances are — (m =5), ﬂ (m=17),
and ¥ (m =9). The resonance width for m =5, £=0.0173 was
doubled for inclusion in the figure.
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TABLE II. Parameters of DCI models.

Parameter ONE TWO
Interaction regions 1 2
~0.88 ~1.76
B* (m) Horizontal 2.18 2.18
Vertical 2.18 2.18
€ (um)  Horizontal 0.282 0.282
Vertical 0.015 0.015
Coupling resonance width [13] 0.001 0.002
Arc errors {horizontal, vertical} {0.0005, —0.002},
Energy (y) 1.57X10° 1.57X 10°
Fractional energy loss per turn 7.1X107¢ 14.2X107¢
Feedback No feedback No feedback

Nominal beam sizes (um)
Number of test particles/beam, Nqp
Turns of tracking

569 (fully coupled)

569 (fully coupled)
10000
10000

10000
20000

spaces as the instability develops. This is seen clearly and
is illustrated in Fig. 5 for @ =0.80075. The difference
Ja—f4 starts out essentially uniform. Fivefold structure
has developed by turn 300. It persists during the rapid
growth of beam size, but phase space has become badly
distorted by the time the beam has reached its limiting
behavior. The vertical phase space also has fivefold
structure during the growth of the instability, and it
evolves in a similar manner through turn 1000. Other
resonances have phase space structure determined by the

resonance order. Figure 6 is an example for the 18th or-

der resonance Q = 1.

The beams are nominally round, but there are no re-
strictions forcing them to stay round. However, they do
remain round to a substantial degree, although some vari-
ation with the azimuthal angle in physical space does

occur. This is illustrated in Fig. 7.

1.6 — T T T
i One Interaction Region
Two Interaction Regions
14| 19/22 26/30
=
®
1.2}
(g
1 1] PR RN
0.85 0.855 0.86 0.865 0.87 0.875

Arc Tune (Phase Advance Between IR's)/2%

FIG. 10. rms beam size in DCI normalized to the nominal
size for region I: Q ~0.865, £=0.0218. Even order resonances
up to 30th order are plotted with widths calculated using the m
dependence in Eq. (20) and a coefficient three times larger.

The instability growth rate was estimated by fitting the
square of the beam size, corrected for the equilibrium
size, 0> — o3, with an exponential during the initial rise of
the instability. This quantity was chosen for fitting since
it is proportional to the emittance increase due to the in-
stability. Figure 8 shows the results. The width is about
three times that expected using the eigenvalue in Eq. (20).
When three times that eigenvalue is used, the width
agrees and the growth rate is about half that of Eq. (19).
This is reasonable agreement given that comparable ei-
genvalues were neglected and that the connection be-
tween the growth rate given by Eq. (19) and the growth
rate of 02—a?3 is tenuous.

Note that the growth at @ =X is not exactly zero, as
would be expected. We found that the growth rates at
the centers of resonances depend on the number of test
particles and tend to zero as N1, where Npp is the num-
ber of test particles. The growth rate at AQ =—0.0005,
a point of maximum growth in Fig. 8, changed by less
than 25% when the number of test particles was varied
from 25 000 to 150000.

Two other aspects of the Vlasov equation solution were
studied. Odd order resonances were searched for and
none were found, and resonance widths were measured
by tracking for different values of Q and £. The resultant
dependence on resonance order is given in Fig. 9. The
widths are linear in £, and they depend on m as m ~26 to
m ~%%_ This is in good agreement with the dependence
expected from Eq. (20).

DCI PERFORMANCE

Four DCI operating points documented by LeDuff
et al. [8] were chosen for comparison between measure-
ments and simulations. Two models of DCI, ONE and
TWO, named after the number of interaction regions,
were used. Reference [9] has details of these models. Pa-
rameters are given in Table II.

Figure 10 shows the results for one point, Q =0.865
and £=0.022. There are strong, low order resonances,
Q=1 and Q=1, on the two sides of this operating
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TABLE III. Comparison of measured and simulated widths of stable operating regions. Measured
widths are from LeDuff et al. [8]. The entries are the stable operating regions from Fig. 3 of that refer-
ence divided by 2 for comparison with simulations of ONE.

Region o I I ) I ) - v
0 £ " 0.865, 0.022 0.884, 0.018 0.894, 0.014 0.907, 0.011
Measured width 0.0020 0.0027 0.0027 0.0034
Simulated width 0.011 0.009 0.009 0.013
Bounding resonances Z2,1 L & K, ¥ %, 4
Overlapped resonances o % -z z z

(up to 30th order)

point, leading to a region of width AQ ~0.011, where the
beam size has increased by less than 10% after tracking
for 20000 turns. This is to be compared with a measured
stable operating region of AQ =0.0020, which was ex-
tracted from Fig. 3 of Ref. [8] and reduced by a factor of
2 for comparison with the one interaction region model.
The measured widths for stable operation at the four
operating points are compared with the widths from
simulation in Table III. The simulation predicts stable
regions 3-5 times wider than those measured.

The measurements themselves could be in error due to
effects such as quadrupole power supply regulation, nar-
rowing the observed stable operating point, but this can-
not be tested and must remain speculation at best. Syn-
chrobetatron resonances could play a role, but the DCI
bunch length was short compared to 8*, and the disper-
sion at the interaction region was small [14]. There are
indications that phase advance errors between the in-
teraction regions affected the DCI tune shift limit with
two beams [9]. A simulation of DCI with two interaction
regions and phase advance errors was performed to see if
these errors affect the four-beam performance. These re-
sults are shown in Fig. 10. Phase advance errors between
interaction points do not change the width of the stable
region in this case.

The resonances bounding each of the regions as well as
the resonances up to 30th order within each region are
listed in Table III. In three of the regions (all except IV)
one of the bounding resonances could be a lower, odd or-
der resonance if the round beam symmetry were broken.
In addition, two of the regions, I and IV, overlap reso-
nances that could be lower odd order resonances, if the
round beam symmetry were broken. Closed orbit offsets
at the collision point or unequal horizontal and vertical
tunes could break this symmetry and could possibly be
the cause of the disagreement between measurements and
this simulation.

SUMMARY AND CONCLUSIONS

The simulation results are in excellent agreement with
the qualitative features of Derbenev’s theory: (i) absence
of odd order resonances for round beams, (ii) tune depen-
dence of the stability of the f* and f~ modes, and (iii)
phase space structure of the unstable modes. The widths
and growth rates are comparable to those calculated, and
the dependence on resonance order is in good agreement
with that expected.

The simulation agrees with the locations of stable
operating points in DCI, but predicts operating regions
three to five times wider than those measured. There are
a number of possible explanations, but they are difficult
to explore because DCI is no longer available for collid-
ing beam experiments.

High order coherent beam-beam instabilities have been
observed with modest beam-beam strength parameter,
£~0.02-0.04; the width of an 18th order resonance was
measured for Fig. 9, and the effects of 14th and 22nd or-
der resonances are shown in Fig. 10. The appearance of
these high order resonances is in contrast to the two-
beam situation, where resonances higher than eighth or-
der were never observed in simulation. The absence of
Landau damping makes the coherent beam-beam interac-
tion the important, limiting phenomena for space-
charge-compensated colliding beams.
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